

©1984 AT&T
All Rights Reserved
Printed in USA

NOTICE

The information in this document is subject to change without notice. AT&T
assumes no responsibility for any errors that may appear in this document.

UNIX is a trademark of AT&T

CONTENTS

HOW TO READ THIS GUIDE ...ccoiorennnacrnanannansnsssannnmmnnnnsnnnnnssssssnnsnnssassassnnssnnnssensnsns il

PART 1. UNIX SYSTEM OVERVIEW

CHAPTER 1. WHAT IS THE UNIX SYSTEM?

What The UNIX SYSEeM ISccecirmccacmmnsonmnnsmncnaranmcanmassannasnasnsmnsmnnmsasnnsmasmmnssssane 1-1
How The UINIX SYStem WoOMKS ccumrmemrreemenrammannsasnonnmmmmnmnnmmmnsssnsssmmnmsassenmnsmssensssns 1-3

CHAPTER 2. BASICS FOR UMIX SYSTEM USERS

LeT-T13ToTe JEST -1 L=V . 2-1
About The Terminal.... 2-2
Obtaining A Login Name . 211
Establishing Contact With The UNIX System.... . 211
CHAPTER 3. USING THE FILE SYSTEM
Lk 4T 10T oY T OO 3-1
How The File System 18 SEHUCTUTEM . ..ocvvnrenrrneconsnsmnnsmnssnssnmessassnnnnsnansnnsnsannenn 3-4
Your Place In The File System SIMUCIUR@ .. .cvrrvececcmommmnnmnnnssnsmanressnnmnnsannnsnnnssnne 3-4
Organizing A DIreClony SIMUCRUTE .o crecnrcannneroaranmmmsmnnramanmesrmsnnnaaransnssnsansnan 3-16
Accessing And Manipulating Fil@Sccriermceececcmmmmnnmnnmnnmnsnssnssnssassansanensnnasnon 3-29
BUIINITIIAEY 1-annenrnnnaannnnsamsassansansnnsnanmnsassmmsnnnsnssnsenssssmosnnsnnmssnnannnnnsnnssnnnsnnnsnnasnnn 3-64
CHAPTER 4. UNIX SYSTEM CAPABILITIES
Lk gL LT T 4-1
Text Editing......nemnnnn- . A1
Working In The Shell ... 4-6
Communicating Electronically 4-20
Programming IN THE SYSTOMY ccurirrwmerirnnnrnnnsnnnssnnsnnssmnsssnnansnnsssssnnssnssssnnsnnssennes 4-21

CONTENTS

PART 2. UNIX SYSTEM TUTORIALS

CHAPTER 5. LINE EDITOR TUTORIAL (ed)

introducing The Line Editor 5-1
How To Read This TULOMIAN . ccerimmnncnnnnnnnnnsnssnsnmssnnmmsmomsamsnasaanmmnnmnnssnsnnanasnanenn 5-2
LTSS (1Yo RS T L - e U U 5-3
FEX@TCISE T anvnwncuncnnnnmnnmnannnnanansmncmnassnssssnnnnnsnnsnnasmessnsnanmonsnssnsnn snnssnsnnssnnnannnnnnn 5-13
General Format Of ed COMMANAScruneasnnnncnnnnnnnnnmsnsaransnnasnssnannansannsanssnnnnnnns 5-13
Line ACQATE@SSING 1reeamannenammnnssnsnrnsnonnnmanssasssnsnnnnnnssnsennssnnsnnnnnsnnssansannnnnnsansnennnanass 5-14
EXEFGISE 2 wneenrmnnennnesnnnsnnsnnsmsnssssnnannmnnesnsssnannnmnmnnannnassssssssnsnennnestnnsaannnnssnnnannnnn 5-29
Display Lines I A File......crerenanenmnnnmmmnmnammmnansanemnsssnsnnnnnannssnnnnsnsnansemnnnnsnnnanssass 5-30
CreatiNg TOXE ovrmcrnnnansnennnannnssnansnannasnsnsssnsssnasrnsnaansasnasnnsantsmasnssnasnnsnnssnnannnansnnn 5-33
FEXOICISE B orerrnnnananarnanmrsnrmana nsranansnnssnsansanaaasnnsnnsomssnssnnmns s ssR s s an e n s AR AR SRR 5-39
D@IE@EIMA T@ X . runnrnnsnmnnnannmnnnnsnasnnssnessnnsssnnsmnnrassrasssssnassnnnnsnnsnasnnennnnnnnmsnensnnanansnnn 5-41
SUDSHEUEING T@XE. o ienrrerirenrnnsnsnnmnnmaranaansnsanannsmmnnnsrsanssasssnssnnssnnmsasssnnssnsnnnssnnnnn 5-47
EXEICISE @ oeenennmnennrnannnnncmnsennessanamnsmnnnrnn AR AR AR R AR R ARs AR RAR SRR AR R R AR R n o n 5-54
SPECial CRATACIOFS (uvnnnrrnerannenneaarnnnnsnnnnnsssnsntanannsanassesnnnnansnsnanassnnsssnnnsnnnsnnnnssans 5-56
EXEICISE 5 1nnnrennnmnnnnnnasanssnsnnnnmssnannanansssanssnnsnnsensnssanasnassssnnmne s sanansssnsaanssnnssnnns 5-67
PAOVING T@XE vnnnennnannnnannnsanannmenmmnsnsnnnssnnssmnnsnnnsasnnesnnesnnsssnsnsnsnnanr R Ansanasnannnnnnnnn 5-69
EMOTCISE B ovrrecrncnemrmnrrnrmnrssanannsnnsnansanmoaanmmsntessnsnansnnsansnsnnesnesnsssnnsnns s Ana R R nmanan 5-79
QOther Useful Commands And INFOrmMationcccammenmmmnnssessanannnssnasaansnmnnanannannnne 5-79
= T 1= - S OO R NPt 5-88
ANSWEFS RO EX@ICISOS cannnnnrrnrnnnnnnnssnnssnnsannsnanannnssnnnsnsnasansnsansanssnnsmnasssnasnnssnasnnnn 5-80
CHAPTER 6. SCREEN EDITOR TUTORIAL (vi)
Getting AcquAINted WIkh Wi.....ccarnerinnsnnnnsnesnmnssssnnssnassnnmnsnnnsnnnnnnnssansnnanasnnnnnnnnn 6-1
How To Read This TUROTIAN ccucamnrmncmnmmnnrmnnransammnssanmnsmnssanmnassanmanassnmnmsnasnassmnnasnnas 6-2
GEthiNG SRATEEM. . cnnannnmnnnmnnnsnrrrnnrsnranasrrnamnaamaaRRaRERAARARARRRRARRR AR AR AR RRaR R AR AARAARRRR RS 6-5
EMEICTISE T ororrnrmmimannnnnannanennnnsmnnasmnarnnesanensnmssnssmssnsnss s s s sk 6-15
Positioning The Cursor In The WINAOWcrrrrnrennenavananassamnmsmnmmsmassassanasanasans 6-16
Positioning The Cursor IN The Fil@cwmmmcrmasesnmnnenessamnnnnmmasnsnasmanmnmmsnsnasssesanns 6-34
EXOICHASE 2 o oooeerinnrennsnnnnnrnnansnnrnnmanmananastnssannansnssnnsanasnssansassnsnarannnasnaRnansaenanmrsnns 6-45
CF@BRING T@ME oreernrmnnrninnrrrnrnesssancanmaannnrRnsRR "R nAR TR T RS ARARRRAAR SRR mnn A n s n AR nan AR e n e 6-46
EXEICISE B nncemnrnnmnnmannnmmassnsannassnnseninnsanmansnnanmssianansannnssnnsessnmsn e s ss s snas 6-50

CONTENTS

CHAPTER 6. SCBEEN EDITOR TUTORIAL (vi) (Continued)

D @IEEIMG T @XRurnnnnnnnnnnnannnsmnmmnnmnnmnssnransnnnnnannennnnsmnnmnnassnsssnasnnnnsansnanennsnsnsnnnsnnsnnnnn 6-51
EIX@ECIS@ 4 coreerrnnnnnennnrnnnnnanesnssannnnnnesnnnannsannnnnsnsnnnannmnsnnnssnnsnnsnsnenanannanannsnnssnann 6-60
CRANGIMG T XA . irnmnrnrnennennnnansnnnasnsnnnnnsmnmnnmnmnsnsanannsmsnsasnnsasnsnnnsnsnsnssnssnnsssnsesnnnnnn 6-60
Cutting And Pasting Text EleCtromiCaANY ... areerrrrrnnnnnennnesnnnssssssnsssnnsssssasnannes 6-66
EXOFCIS@ 5 1nunnnnnnnnnnnnnnnsnamunmmnnmnnsnnsssnnnnsssnmnssanasnannnannnnsnnnssnnssnannsnssennnsanssnnannnnnnnn 6-70
SPOCIAl COMMANMGS nrnninannnansnncrmnnsrmnrmnnnanassnsnssnmnmnnsmsnnsssesnnsnnnsnsnssnssnessnnsnnmnnnnn 6-71
Line Editing CoOmMMANOS......mirrnccanmnameasearmammamsnnsnssnsmassssssssssnansnsmnssnnsnnsnnssnssnnsen 6-7T4
QUITERING Voo ceemcrnnrnmarnmnnnsnnnnnnsnnensassnnnnnssmnansrananaRamamnrA""nsnmnesnasenssnnssnsnnnnnanannsnnann 6-80
SPECIAl OPLIOMS FOF Vi coenienimnnnrnnneecnmsannnmsnnssnnsnassnansansnesmeosmsnnsssessssnnsssnssnsssanns 6-82
EX@ECISE B oovrernrncnnennnannnsnnnsnnnnnnnasanssmnansnnsnsnnssanmmsnnnanasnmsansensnsnsnennssnnsnnnnnansonnnn 6-84
Changing YOuUr EnVirOMMIE@ME ..., .cmnareneirnramnnsnensmnsssnsnssnnsnsssssnssnssnnnssnsssnnssnssnssnsns 6-85
ANSWETS 10 EX@FCISRS connrncmnnnnnrrnnnnnrnnnsnannnnsssnsnnnsnnenennnesansannsessmnnnssnnnsnanasnennmnnn 6-88

CHAPTER 7. SHELL TUTORIAL

Making Life EAsier IN THE SNEIccccwmamarimnensmmnnmmanennsannsssasansessnnnsanssssnsennnsanes 7-1
How TO Read ThiS THROFIBN cruumrercanmrnremnncnnnnnansssnmsnsnensssnnsnsnosnnsnsnsnsnnsssssnnsnssnsnn T2
Shell CoOMMABNA LANMGUABGR wenrmneannensnerensarnnmmnnsnnssennnesssnssmessmensssanssnassnsnsnssneennss 7-3
ComMAND LANGUAGE EXOICISES wrnurrnnnnnnnnnnnsnnnsnsnsennnsanssnnssnnssnnesnssanesssenssnnssensse 7-21
SHOIl PrOGIAMIING . oo onceemnneerncararnnnrnssnsnssmnnnssesannsanennsnnmnnnsssnsnsnensnsssnnnsnnesnmnsnn 7-32
Shell Programming EX@ICIS@S . uuumrrrnrrranmnnnssnnssnsssssnsnnasasnssnsssnsssnssnsnsnsssnssssssnsnn 7-86
ANSWEES £0 EX@ICIS@S 1iinnnnnnnnnnrrmannerannnaranmnmsmmmmnnssmensnsennmanassnanmmnnnssssnnnnnnnnssssnnn 7-88

I EFOOUCHION ... crastenncncnanennsennansnnnenmsmnannnnsnneannnnnnnnannnsssannnnannnsnsensssnnanansssnsnnnnn 8-1
Communicating On The NI SYS @M auarmrnrrmnrnnnensnssnnsmnmannsennssnsnssnnssnnssennsssnssen 8-2
How Can You CommMUNICAE 2. ...cccccreereninisnsnnssaranannsnnssneanassesssannnnnnnnsssnnssssssns 8-3
Sending ANd ReCeiving MeSSAGES ... cumrmmarrnnesnnesnneernessnssnnsmnnesnssnnsssnnnsnnssossmes 8-4
Sending And ReCeiViNg FIleS . ..uirricirrronacnennnansssnnnssenssssnsnssnnnnssssnnssesnasassssnnssee 8-17
Advanced Message And File HANOUING wauummmmemeoereermnnennncnnnanssnnssenersenssnnensnsesns 8-29

CONTENTS

PART 3. SUPPLEMENTARY INFORMATION AND REFERENCE TOOLS

Appendix A. Selected UMIX System Documentation....ccrrmnmmnasssssressnmnnsnnaas A-1
Appendix B. File System Orgamizalion ... ceorcrmnmemmmnonennsinsnsnnsnsnssnssnnnasnnnn B-1
Appendix C. Summary of UMIX System ComMmMAanNdS.......ccccrinemmnnmnnnanannnanannnan C-1
Appendix D. Quick Reference {0 @d COMMANGSccccrmrmmmmmmanrnannsenansnnnnanananas D-1
Appendix E. Quick Reference o vi COMMANMScrcrmarnansmnnnsmnnneannannnnsssnnnns E-1
Appendix F. Summary of Shell Programming Ingredienisccmmmneennncecncanes F-1

(GHOSSANY wanurnnnennnnnnnmnnnssnnsnssrnnasnnmnnnsnsasnmanasesnsnnnnsnnnanansnssaansnasnann G-1

LT 1= PP PP RPRPEP -1

v

HOW TO READ THIS GUIDE

The UNIX* system is a family of computer operating systems
developed by AT&T Bell Laboratories and licensed by AT&T
Technologies, Inc. Because it can run on many sizes and types of
computers and because of all it can do, the UNIX system has gained
wide popularity since it was introduced in the late 1960s. Now,
either by choice or by fate, you are interested in learning something
about it.

This guide is written to help you, the user, understand how the
UNIX system works and what it can do for you. It introduces you to
UNIX System V, Release 2. New versions of the UNIX system, called
releases, will be offered as changes are made or as improvements are
added.

Who Should Read This Guide

Whether you are a newcomer to the world of computers or an
experienced computer user who is unfamiliar with the UNIX system,
this guide is for you. Although it contains technical material, it can
be understood by either a newcomer or an expert. You will find that
learning to use the UNIX system requires some thought and time, but
you will be rewarded with power and flexibility unattainable with
other operating systems.

This guide assumes that you are one of a number of people using a
computer on which the UNIX system is running, and that there is a
person responsible for monitoring and controlling the UNIX system
you are using. This person is the system administrator. If, however,
you are using the UNIX system on a small computer, you may also act
as its system administrator. In this case, in addition to this guide, you
should consult the documents you received when the UNIX system
programs were delivered to you. (See Appendix A for information on
how to order additional copies.)

* Trademark of AT&T Bell Laboratories
vii

HOW TO READ THIS GUIDE

How This Guide Is Organized

The material in this guide is organized into three major parts: UNIX
System Ouverview, UNIX System Tutorials, and Supplementary Information
and Reference Tools. Both the major parts and the chapters in each part
are separated by tab dividers.

The following list summarizes the contents of each major part:

» UNIX System Overview--This part introduces you to the basic

principles of the UNIX operating system. The material in this
part is organized into four chapters, each chapter building on
information presented in preceding chapters. Therefore, it is
recommended that you read chapters 1 through 4 in order. The
chapters that make up this part are:

Chapter 1, What is the UNIX System?-- Acquaints you with
the UNIX system and explains how it works.

Chapter 2, Basics for UNIX System Users--Covers topics
related to using your terminal, obtaining a system
account, and establishing contact with the UNIX system.

Chapter 3, Using the File System--Explains what the file
system is, how you can organize information (data, text,
and programs) wvsing the file system, and how you can
store and retrieve this information using appropriate
commands.

Chapter 4, UNIX System Capabilities--Builds on material
and terminology presented in the first three chapters. It
highlights UNIX system capabilities, such as command
execution, text editing, electronic communication,
programming, and aids to software development.

- UNIX System Tutorials--Each chapter in this part takes a

wiik

step-by-step approach to teach you about one aspect of the UNIX
system. You will gain the greatest benefit from them if you work
through the examples and exercises at a terminal connected to
the UNIX system you will be using. The tutorials assume that

HOW TO READ THIS GUIDE

you understand the concepts introduced in chapters 1 through 4.
For example, before reading either the Line Editor Tutorial or the
Screen Editor Tutorial, read the explanation of text editors in
Chapter 4. The chapters that make up this part are:

~ Chapter 5, Line Editor Tutorial-- Teaches you how to use the
ed text editor to create and to modify text on a paper
printing or a video display terminal.

— Chapter 6, Screen Editor Tutorial --Teaches you how to use
the vi* text editor to create and to modify text on a video
display terminal.

— Chapter 7, Shell Tutorial--Teaches you how to use the shell
to automate repetitive jobs. The shell is the part of the
UNIX system that interprets the commands you type.

— Chapter 8, Communication Tutorial--Teaches you how to
send information to others, whether they are working on
your UNIX system or on a different UNIX system.

> Supplementary Information and Reference Tools--This part is
organized into six appendices, a glossary, and an index. This
material contains additional information that you may find useful
in learning about the UNIX system. The appendices are:

— Appendix A, Selected UNIX System Documentation--Lists
additional UNIX system documentation that enhances or
elaborates on the information presented in this guide.
This appendix gives document titles, reference numbers,
and information on how to obtain the documents.

— Appendix B, File System Organization--lllustrates how
information is stored in the UNIX operating system.

— Appendix C, Summary of UNIX System Commands--
Describes, in alphabetical order, each UNIX system
command discussed in this guide.

* The visual editor is based on software developed by The University of California,
Berkeley, California; Computer Service Division, Department of Electrical
Engineering and Computer Science, and such software is owned and licensed by the
Regents of the University of California.

ix

HOW TO READ THIS GUIDE

— Appendix D, Quick Reference to ed Commands--Describes
the commands used with the line editor (ed), first in
alphabetical order, and then organized by topic, such as
creating text, deleting text, and displaying text.

~ Appendix E, Quick Reference to vi Commands--Describes the
commands used with the screen editor (wi), first in
alphabetical order, and then organized by topics, such as
creating text, changing text, and cutting and pasting text.

— Appendix F, Summary of Shell Programming Ingredients--
Describes shell command language concepts and shows
how to use shell programming language statements.

Other sections in this part of the guide are:

— Glossary--Defines technical words and terms used in this
book.

— Index--Gives an alphabetical listing of topics, together
with the page numbers on which they appear in this
guide.

Acknowliedgements

Many persons, tco numerous to mention, coniributed suggestions that
are reflected in the pages of this guide. These persons include
members of AT&T Bell Laboratories and AT&T Technologies, Inc., as
well as reviewers and consultants not affiliated with AT&T.

The text of this guide was prepared using UNIX system text editors
described in this guide, formatted wusing the UNIX System
Documenter’s Workbench* troff, tbl, and mum macros, and produced on
an AUTOLOGIC, Inc., APS-5 phototypesetter operating under the
UNIX system.

* Trademark of AT&T Technologies, Inc.
X

UNIX SYSTEM OVERVIEW

Chapter 1.
Chapter 2.
Chapter 3.

Chapter 4.

Contents

What Is the UNIX System?
Basics for UNIX System lsers
Using the File System

UNIX System Capabilities

Chapter 1

WHAT IS THE UNIX SYSTEM?

PAGE
WHAT THE UINIX SYSTEM BS .. coerecnmmmrnrnrnnnnnsesannsssmmnnnmsnnnnssnsnssssnassnenansssssnssnnnsnsssen 1-1
HOW THE UNIX SYSTEM WORIKS ... e sonrescnnnesssnansssnnsnsnsansssmasssanssssssnnssssnmsnn 1-3
LT T 1-4
SIVEN ccmannrnnnnnnanannnnnnnnrnnmraRRSRARRAAR R enRAR AR AR AR AR AR AR R AR AR AR AR n R 1-8
COMMIANAS wannnnnnnnnnnnnnsnamsnsmnsanncamsnnnnmmmnnnarnsmnnassnnnsscmnnansmmnmsnnannasnensns 1-9
What Commands Do . 1-10

How Commands Execute

111

Chapter 1

WHAT IS THE UNIX SYSTEM?

WHAT THE UNIX SYSTEM IS

The UNIX system is a set of programs, called software, that acts as the
link between a computer and you, its user. The UNIX system is
designed to control the computer on which it is running so the
computer can operate efficiently and smoothly and to provide you
with an uncomplicated, efficient, and flexible computing
environment.

UNIX system software does three things:
» It controls the computer,
« It acts as an interpreter between you and the computer, and

= Jt provides a package of programs or tools that allows you to do
your work.

The UNIX system software that controls the computer is referred to as
the operating system. The operating system coordinates all the
details of the computer’s internals, such as allocating system resources
and making the computer available for general purposes. The
nucleus of this operating system is called the kernel.

In the UNIX system, the software that acts as a liaison between you
and the computer is called the shell. The shell interprets your
requests and, if valid, retrieves programs from the computer’s
memory and executes them.

The UNIX system software that allows you to do your work includes
programs and packages of programs called tools for electrenic
communication, for creating and changing text, and for writing
programs and developing software tools.

1-1

WHAT 1S THE UNIX SYSTEM?

Put simply, this package of services and utilities called the UNIX
system offers:

~ A general purpose system that makes the resources and capabilities

3

of the computer available to you for performing a wide variety of
jobs or applications, not simply one or a few specific tasks.

A computing environment that allows for an interactive method
of operation so you can directly communicate with the computer
and receive an immediate response to your request or message.

A technique for sharing what the system has to offer with other
users, even though you have the impression that the UNIX
system is giving you its undivided attention. This is called
timesharing. The UNIX system creates this feeling by allowing
you and other users--multiusers—-slots of computing time
measured in fractions of seconds. The rapidity and effectiveness
with which the UNIX system switches from working with you to
working with other users makes it appear that the system is
working with all users simultaneously.

A system that provides you with the capability of executing more
than one program simultaneously, this feature is called
multitasking.

The UNIX system, like other operating systems, gives the computer
on which it runs a certain profile and distinguishing capabilities. But
unlike other operating systems, it is largely machine-independent;
this means that the UNIX system can run on mainframe computers as
well as microcomputers and minicomputers.

From your point of view, regardless of the size or type of computer
you are using, your computing environment will be the same. In
fact, the integrity of the computing environment offered by the UNIX
system remains intact, even with the addition of optional UNIX
system software packages that enhance your computing capabilities.

HOW THE UNIX SYSTEM WORKS

HOW THE UNIX SYSTEM WORKS

After reading the past few pages, you know that the UNIX system
offers you a set of software that performs services-—-some
automatically, some you must request. You also know that the system
creates a certain environment in which you can use its software. But
before you can ask the UNIX system to do something, you need to
know what it is capable of doing.

Look at Figure 1-1. It shows a set of layered circles in graduated sizes.
Each circle represents specific UNIX system software, such as:

- Kernel,
= Shell, and

» Programs/tools that run on command.

Programming
Environment

Text
Processing

Electronic
Communication

Kernel

Additional
Utility
Programs

Information
Management

Figure 1-1, UNIX system model

1-3

WHAT IS THE UNIX SYSTEM?

You should know something about the major components of UNIX
system software to communicate with the UNIX system. Therefore,
the remainder of this chapter introduces you to each component: the
kernel, the shell, and user programs or commands.

Kernel

The heart of the UNIX system is called the kernel. Figure 1-2 gives an
overview of the kernel’s activities. Essentially, the kernel is software
that controls access to the computer, manages the computer’s
memory, and allocates the computer’s resources to one user, then to
another. From your point of view, the kernel performs these tasks
automatically. The details of how the kernel accomplishes this are
hidden from you. This arrangement lets you focus on your work, not
on the computer’s.

Allocates
system
resources

Maintains
file system

Manages
memory

Controls
access to
computer

Figure 1-2. Functional view of kernel

On the other hand, you will become increasingly familiar with
another feature of the kernel; this feature is referred to as the file
system.

HOW THE UNIX SYSTEM WORKS

The file system is the cornerstone of the UNIX operating system. It
provides you with a logical, straightforward way to organize, retrieve,
and manage information electronically. If it were possible to see this
file system, it might lock like an inverted tree or organization chart
made up of various types of files Figure 1-3. The file is the basic unit
of the UNIX system and it can be any one of three types:

Q = Directories
D = Ordinary Files
v = Special Files

O

Figure 1-3. Branching directories and files give the UNIX system
its treelike structure

» An ordinary file is simply a collection of characters. Ordinary files
are used to store information. They may contain text or data for
the letters or reports you type, code for the programs you write,
or commands to run your programs. In the UNIX system,
everything you wish to save must be written into a file.

In other words, a file is a place for you to put information for
safekeeping until you need to recall or use its contents again.
You can add material to or delete material from a file once you
have created it, or you can remove it entirely when the file is no
longer needed.

1-5

WHAT IS THE UNIX SYSTEM?

» A directory is a file maintained by the operating system for
organizing the treelike structure of the file system. A directory
contains files and other directories as designated by you. You
can build a directory to hold or organize your files on the basis
of some similarity or criterion, such as subject or type.

For example, a directory might hold files containing memos and
reports you write pertaining to a specific project or client. Or a
directory might hold files containing research specifications and
programming source code for product development. A directory
might hold files of executable code allowing you to run your
computing jobs. Or a directory might contain files representing
any combination of these possibilities.

2

A special file represents a physical device, such as the terminal on
which you do your computing work or a disk on which ordinary
files are stored. At least one special file corresponds to each
physical device supported by the UNIX system.

In some operating systems, you must define the kind of file you will
be working with and then wuse it in a specified way. You must
consider how the files are stored since they can be sequential,
random-access, or binary files. To the UNIX system, however, all files
are alike. This makes the UNIX system file structure easy to use. For
example, you need not specify memory requirements for your files
since the system automatically does this for you. Or if you or a
program you write needs to access a certain device, such as a printer,
you specify the device just as you would another one of your files. In
the UNIX system, there is only one interface for all input from you
and output to you; this simplifies your interaction with the system.

The source of the UNIX system file structure is a directory known as
root, which is designated with a slash (/). All files and directories in
the file system are arranged in a hierarchy under root. Root normally
contains the kernel as well as links to several important system
directories that are shown in Figure 1-4:

[bin Many executable programs and utilities reside in this
directory.
/dev This directory contains special files that represent

peripheral devices, such as the console, the line
printer, user terminals, and disks.

1-6

2-i

O = Directories
N/ = Spesial Files

consolg,

Figure 1-4. Sample of typical file system structure

SHEOM WHLSAS XINM IHL MOH

WHAT S THE UNIX SYSTEM?

fetc Programs and data files for system administration can
be found in this directory.

/lib This directory contains available program and
language libraries.

[tmp This directory is a place where anyone can create
temporary files.

fusr This directory holds other directories, such as mail
(which further holds files storing electronic mail),
news (which contains files holding newsworthy
items), rje (which contains files needed to send data
via something called the remote job entry
communication link), and games (which contains files
holding electronic games).

In summary, the directories and files you create comprise the portion
of the file system that is structured and, for the most part, controlled
by you. Other parts of the file system are provided and maintained
by the operating system, such as bin, dev, etc, lib, tmp and usr, and
have much the same structure on all UNIX systems.

Chapter 3 shows how to organize a file system directory structure and
how to access and manipulate files. Chapter 4 gives an overview of
UNIX system capabilities. The effective use of these capabilities
depends on your familiarity with the file system and your ability to
access information stored within it. Chapter 5 and Chapter 6 are
tutorials designed to teach you how to create and edit files to meet
your computing and information management needs.

Shell

The shell is a unique UNIX system program or tool that is central to
most of your interactions with the UNIX system. Figure 1-1 illustrates
how the shell works. The drawing shows the shell as a circle
containing arrows pointing away from the kernel and the file system
to the outer circle that contains programs and then back again. The
arrows indicate that a two-way flow of communication is possible
between you and the computer via the shell.

1-8

HOW THE UNIX SYSTEM WORKS

When you enter a request to the UNIX system by typing on the
terminal keyboard, the shell translates your request into language the
computer understands. If your request is valid, the computer honors
it and carries out an instruction or set of imstructions. Because of its
job as translator, the shell is called the command language
interpreter.

As the command language interpreter, the shell can also help you to
manage information. The shell’s ability to manage information stems
from the design of the UNIX system. Each program in the UNIX
system is designed to do one thing well. In a sense, a UNIX system
program is a building block or module that you can use in tandem
with other programs to create even more powerful tools.

In addition to acting as a command language interpreter, the shell is
a programming language complete with variables and control flow
capabilities.

A section of Chapter 4 describes each of the shell’s capabilities.
Chapter 7 teaches you how to use these capabilities to write simple
shell programs called shell scripts and how to custom-tailor your
computing environment.

Commands

A program is a set of instructions that the computer follows to do a
specific job. In the UNIX system, programs that can be executed by
the computer without need for translation are called executable
programs or commands.

As a typical user of the UNIX system, you have many standard
programs and tools available to you. If you also use the UNIX system
to write programs and to design and develop software, you have
system calls, subroutines, and other tools at your disposal. And you
have, of course, the programs you write.

This book introduces you to approximately 40 of the most frequently
used programs and toocls that you will probably use on a regular basis
when you interact with the UNIX system. If you need additional
information on these or other standard UNIX system programs, check
the UNIX System User Reference Manual. If you want to use tools and

1-9

WHAT IS THE UNIX SYSTEM?

routines that relate to programming and software development, you
should consult the LUNIX System Programmer Reference Manual and the
UNIX System Support Tools Guide. Appendix A provides you with
information on how to obtain copies of these manuals.

The details contained in the two reference manuals may also be
available via your terminal in what is called the on-line version of the
UNIX system reference manuals. This on-line version is made up of
formatted text files that look exactly like the printed pages in the
manuals. You can summon pages in this electronic manual using the
command man, which stands for manual page. If the electronic
version of the manuals is available on your computer, the man
command is documented in your copy of the UNIX System User
Reference Manual.

What Commands Do

The outer circle of Figure 1-1 organizes UNIX system programs and
tools into general categories according to what they do. The
programs and tools allow you to:

» Process text. This capability includes programs, such as, line and
screen editors (which create and change text), a spelling checker
(which locates spelling errors), and optional text formatters
(which produce high-quality paper copies that are suitable for
publication).

» Manage information. The UNIX system provides many programs
that allow you to create, organize, and remove files and
directories.

~ Communicate electronically. Several programs, such as mail,
provide you with the capability to transmit information to other
users and to other UNIX systems.

» Use a productive programming and software development environment.
A number of UNIX system programs establish a friendly
programming environment by providing UNIX-to-programming-
language interfaces and by supplying numerous utility programs.

 Take advantage of additional system capabilities. These programs
include graphics, a desk calculator package, and computer games.

1-10

HOW THE UNIX SYSTEM WORKS

How Commands Execufe

Figure 1-5 gives a general idea of what happens when the UNIX
system executes a command.

YOUR
REQUEST

DIRECTORY
l INPUT SHELL SEARCH
e | Ginauace
L SestiRA, INTERPRETER) PROGRAM PROGRAM
) EXECUTION RETRIEVAL

Figure 1-5. Flow of comtrol between you and computer when
you request program to run

=
o

EXECUTABLE

When the shell signals it is ready to accept your request, you type in
the command you wish to execute on the keyboard. The command is
considered input, and the shell searches one or more directories to
locate the program you specified. When the program is found, the
shell brings your request to the attention of the kernel. The kernel
then follows the program’s instructions and executes your request.
After the program runs, the shell asks you for more information or
tells you it is ready for your next command.

This is how the UNIX system works when your request is in a format
that the shell understands. The structure that the shell understands
is called a command line. Chapter 3 explains what you need to know
about the command line so you can request a program to run.

This chapter has outlined some basic principles of the UNIX
operating system and explained how they work. The following
chapters will help you begin to apply these principles according to
your computing needs.

Chapter 2

BASICS FOR UNIX SYSTEM USERS

PAGE

GETTIMG STARTED ooencnnsercesnnmnmsnnssensssseesnaennsannmmnnsnssmmmesmmesssssssssnsessssensessnnseseeesees 2-1
ABOUT THE TERMEINAL ...ccnannnnnnmsnmnnnassmssnmssmsmmnsnsnsnsssssnnesneneneesmnnsssmnsesnssssssssnsseeseres 2-2
ReQUIred Terminal SEIMIMGSuurccccrcemamnscananmmnenmnmnsnmaemmeesssnnesssesssessennesssseenesse 2-3
KeYDOATd CRANACEEFISEICS o rnunnnsnennnnmennnnnnnnsnnnssnsnnsssnnnssnnnssnnnsssmennnsnesssssmonenssos 2-4
TYDING COMVEMRIOMS wraroeenennnmnnnsnsnnannsssnsnananasssnnesssnsnmnnnssnssssnssmnsssnnssnnsnnsssnnesmnn 2-6
Responding 0 the CommMAanG PrOMPRum..wessnesssnessonsnsssnssssenssnssessssnsmmns 2-8
COTTRCHNG TY DI T OIS aunnnrrnsesnnensannrmannnnnssnannnnesannsanssnenssnsenmmsnnmsssoessomn 2-8

Typing Speed . 2-9
SEOPPING A COMMBN «ernenmmnnnnnnnmmnmmnmnmnnnnnsennsnnnnssmnmmmannnssnnmmnessnnsnsssneeensesssen 2-9

USING CONITON CRAFCEOIS ... cennnananmnnnnnnnananannnnsnmsmsnmmnnssssseensmnmsnssnssmssenmnns 2-9
OBTAINING A LOGIN NAMEoooveennenmnsnnnnnsssnnnsssnssssnassnsssssaesssansssmnsessssssnssssnsses 2-11

ESTABLISHING CONTACT WITH THE UNIX SYSTEM

LOQIM PrOCEAUIR ..ocnneemmnmnmnnnanansnnennnnsnnnannnessnansne

Password

External Security Code

Possible Problems When Logging In

Simple Commands

Logging Off

Chapter 2

BASICS FOR UNIX SYSTEM USERS

GETTING STARTED

There are general rules and guidelines with which you should be
familiar before you begin to work on the UNIX system. For example,
you need information about your terminal and how to use its
keyboard and about how to begin and end a computing session.

This chapter acquaints you with these rules and guidelines and
presents you with information to help to make your first encounter
with the UNIX system understandable and to lay the groundwork for
future computing sessions. Since the best way to learn about the
UNIX system is to use it, this chapter helps to get you started by
providing examples of how to use these rules and guidelines to
establish contact with the UNIX system and to respond to its requests
and prompts.

For your convenience, an outline of a terminal display screen is used
to set off examples of interactions between you and the UNIX system.
These examples apply regardless of the type of terminal you use.
Inside the screen, what the UNIX system prompts and its responses
are printed in italicc. The commands you type in response to the
system prompts and your other input and data are printed in
boldface type. These include the commands you type that do not
appear on the screen (such as, a carriage return), which are enclosed
in angle brackets < >. The following screen summarizes these
conventions.

BASICS FOR UMIX SYSTEM USERS

italic (UNIX system prompts and
responses)

bold (Your commands)

<> (Your commands or parts

of commands that do not
appear on the screen)

Without further ado, let’s begin.

To establish contact with the UNIX system, you need:
o A terminal,

~ An identification name, called a login name, by which the UNIX
system recognizes you as one of its authorized users,

~ A password with which the UNIX system double-checks and
verifies your identity after you log in and before it allows you to
use its resources, and

» The telephone number to the UNIX system to which your login
name is assigned if your terminal is not directly connected or
wired to the computer.

ABOUT THE TERMINAL

A terminal is an input/output device: through it you input a request
to the UNIX system and the system, in turn, outputs a response to
you. The terminal is equipped with a keyboard, a monitor or display
unit (much like the screem on a television set), a control unit, and a
link that allows it to communicate with the computer.

ABOQUT THE TERMINAL

The terminal you use to interact with the UNIX system can be either
a video display terminal or a printing terminal (Figure 2-1).

sEex

<<€ Sl
TS Ay s
et S i e Tk
cccSfises
e

Figure 2-1. Left, video display terminal (TELETYPE® 5410);
right, printing terminal (TELETYPE 43)

These terminals differ in how they monitor or display input/output.
The video display terminal uses a display screen, whereas the
printing terminal uses continuously fed paper.

Required Terminal Settings

Regardless of the type of terminal you use, you must set it up or
configure it in a certain way to insure proper communication with
the UNIX system.

If you have not set terminal options before, you might feel more
comfortable seeking help from someone who has. Or you can, of
course, be adventurous.

® Registered trademark of Teletype Corporation

BASICS FOR UNIX SYSTEM USERS

How you configure a terminal depends on the type of terminal that
you are using. Some terminals are configured with switches, whereas
other terminals are configured directly from the keyboard using a set
of function keys. To determine how to configure your terminal,
consult the owner’s manual provided by the manufacturer.

Following is a list of configuration checks to be performed on any
terminal before attempting to establish contact with the UNIX system.

- Turn on the power.

» Set the terminal to ON-LINE or REMOTE operation. This setting
insures that the terminal is under direct control of the computer.

= Set the terminal to FULL DUPLEX mode. The full duplex mode
insures two-way communication or input/output between you
and the UNIX system.

= If your terminal is not directly connected or hard wired to the
computer, make sure the acoustic coupler or data phone set you
are using is set to the FULL DUPLEX mode.

= Set character generation to LOWERCASE. If the terminal,
however, generates only uppercase letters, the UNIX system will
accommodate it by printing everything that transpires during the
computing session in uppercase letters.

» Set the terminal to NO PARITY.

» Set the speed or rate at which the computer communicates with
the terminal. This rate of communication is called the baud rate.
Typical terminal speeds are 30 and 120 characters per second or
300 and 1,200 baud, respectively. Occasionally, speeds such as
240, 480, and 960 characters per second or 2,400, 4,800, and 9,600
baud, respectively, are available.

Keyboard Characteristics

If you have seen or had some experience with a typewriter, the
keyboard shown in Figure 2-2 should look somewhat familiar.

2-4

1y

T TELELEET
EHE FTREU,V‘J‘\

cars |

o a s Lo ey e]in

G-¢

Figure 2-2. Example of

keyboard layout (TELETYPE 5410)

TYNINHIL 3HL LNoaY

BASICS FOR UNIX SYSTEM USERS

Its keys correspond to:

» Letters of the English alphabet a through z and A through Z
when you are holding down a shift key,

» Numeric characters 0 through 9,

- A variety of symbols, suchas ! @ #$ % " & () _—+=~"{}[]
N\ <>, 7]

»~ Words, such as RETURN and BREAK, and abbreviations, such as
DEL (delete), CTRL (control), and ESC (escape).

Many of the keys corresponding to symbols, words, and abbreviations
have been added to the keyboard layout and the placement of these
characters or symbols on a keyboard may vary from terminal to
terminal.

Consequently, there is not a truly standard layout for terminal
keyboard characters. There is, however, a standard set of characters
that keyboards have, consisting of 128 characters, called the ASCII
character set. ASCII is pronounced "#s kee” and is the abbreviation
for American Standard Code for Information Interchange. When you
depress a key or combination of keys, the appropriate ASCII code is
sent to the computer for translation from the alphabetic and numeric
characters that we understand to electronic signals that the computer
can decode.

Typing Conventions

To interact effectively with the UNIX system, you should be familiar
with certain typing conventions. An example of a UNIX system
typing convention is using lowercase letters when you issue
commands. Other typing conventions require that you use specific
characters to erase letters and delete lines, or combinations of
characters to stop the UNIX system from printing output on your
terminal monitor temporarily.

The next few pages introduce you to these conventions. Table 2-1
lists these special characters, keystrokes, and their meanings for your
quick reference.

2-6

ABOUT THE TERMINAL

TABLE 2-1
UNIX System Typing Conventions

Key(s) Meaning
$ System’s command prompt (your cue to respond)
Erase a character
@ Erase or kill an entire line
BREAK™ Stop execution of a program or command
DEL* Delete or kill the current command line
ESC* Use with another character to perform specific
function (called escape sequence)
OR

Use to indicate end of create mode when using screen
editor (vi)

RETURN* End a line of typing; designated as <CR>
Control d* Stop input to system or log off; designated as <"d>

Control h* Backspace for terminals without a backspace key;
designated as <"h>

Control i* Horizontal tab for terminals without a tab key;
designated as <"i>

Control s* Temporarily stops output from printing on screen;
designated as <"s>

Control g* Resumes printing after typing <"s>; designated as
<"g>

NOTE: All control characters are sent by holding down the control key and pressing
the appropriate letter.

* Nonprinting characters.

2-7

BASICS FOR UNIX SYSTEM USERS

Responding to the Command Prompt

The standard UNIX system command prompt is the dollar sign, $.
When the $ appears on your terminal monitor, it means that the
UNIX system is waiting for you to tell it to do something. Your
response to the $ prompt is to issue commands followed by
depressing the carriage return key, designated as <CR> throughout
this guide.

The $ is the default value for the command prompt. Chapter 7
explains how to change the default value to another prompt.

Correcting Typing Errors

You can correct typing errors in two ways providing you have not
pressed <CR>. The # symbol allows you to erase previously typed
characters on a line, and the @ sign allows you to delete the line on
which you are working. The # and the @ characters are default
values for character and line deletion, respectively.

Pressing the # key erases the character previously typed, whereas
repetitive use of the # sign erases any number of characters back to
the beginning of the line, but not beyond that. For example, typing

helo#lo

on your terminal keyboard is interpreted by the UNIX system as
"hello" correctly typed.

To delete the entire line on which you are working, press the @ key.
When you do, the UNIX system moves you to the beginning of the
next line.

If you want to use the # or the @ characters literally, that is, you
would like a file to contain the line

Only one # appears on this sheet of music.

orx

I purchased three books @ $15.75 per book.

2-8

ABOUT THE TERMINAL

you would have to press the backslash (\) key before pressing the #
key. Otherwise, the # would erase the space after the word "one"
and the line would print as

Only one appears on this sheet of music.

If you press the @ key without first pressing the \ key while typing
the second example, the @ would erase the entire line. On the other
hand, the leading \ removes the special meaning attached to
characters like # and @ so that they can be understood literally by
the computer.

Typing Speed

After the $ appears on your terminal monitor you can type as fast as
you want, even during periods when the UNIX system is responding
to or executing a command. The printout on your terminal monitor
will appear garbled because your input is intermixed with the
system’s output. The UNIX system, however, has what is referred to
as read-ahead capability, which allows it to separate input from
output and to respond to your command properly.

With read-ahead capability, the UNIX system stores your next request
while the system is outputting information on your terminal monitor
in response to a previcus request.

Stopping a Command

If you wish to stop the execution of a command, simply depress the
BREAK or DEL key. In turn, you will receive the $ prompt indicating
that the UNIX system terminated the running of the program and is
ready to accept your next command.

Using Control Characters

Locate the control key on your terminal keyboard. The key may be
labeled CTRL or CONTROL and is probably to the left of the A key
or below the Z key. The control character is used in combination
with other keyboard characters to initiate a physical controlling
action across a line of typing, such as backspacing or tabbing. In
addition, some control characters define UNIX-system-specific

2-9

BASICS FOR UNIX SYSTEM USERS

commands, such as temporarily halting output from printing on a
terminal monitor.

Type a control character by holding down the CTRL key and
depressing an appropriate alphabetic key. Control characters do not
print on the terminal when typed. In this book, control characters
are designated with a preceding carat (*), such as <"s> for control s,
to help identify them.

Let’s take a look at the capabilities of the control character
combinations you will be using regularly when working with the
UNIX system.

Temporarily Stopping Oufput. At times, you may wish to stop the
UNIX system temporarily from printing output on your terminal
monitor. This could surely be the case when you wish to keep
information from rolling off the screen monitor on a video display
terminal. If you type <"s>, printing of output ceases; typing <"q>
causes the printing to resume.

Terminating a Computing Sessiom. When you have completed a
session with the UNIX system, you should type <"d>. This is the
recommended way to log off the system and is described in detail
later in this chapter.

Additional Contrel Character Capabilities. The UNIX system
furnishes other control character capabilities. For instance, if your
terminal keyboard does not have a backspace key, typing <"h> gives
you a backspace. Typing <"i> gives you a tab key if your terminal
is set properly. (Refer to the section entitled Possible Problems When
Logging In for information on how to set the tab key.)

After you configure the terminal and survey its keyboard, you are
ready to establish communication with the UNIX system if you have
a login name.

2-10

Bon Bt B AARS R oAl BARSAAA AoBslH R AR B WEARTE B ARRE. ROV of F o R B BV

OBTAINING A LOGIN NAME

Generally speaking, a log contains a record of information or data
that notes a series of events or measures progress or performance.

The UNIX system procedure for logging in is based on this idea.
When you attempt to establish contact with the system, the UNIX
system verifies that you are an authorized user. If you pass the
system'’s security checks, the UNIX system allows you to log in. After
you are logged in, the system maintains a record of the resources you
use, the way in which you use them, and for how long. This log
helps the people who manage and maintain the system by giving
them complete user and resource allocation information.

To receive a login name, set up a UNIX system account through your
local system administrator or the person in charge of your UNIX
system installation. When the account is approved you should
receive notification of your login name and the telephone number of
the system to which your login is assigned.

Your login name is determined by local practices. Possible examples
are your last name, your nickname, or a UNIX system account
number. Typically, a login name is three to eight characters in
length. It can contain any combination of alphanumeric characters,
as long as it starts with a letter. It cannot, however, contain any
symbols. According to these rules, the following examples are legal
UNIX system login names: starship, mary2, and jmrs.

ESTABLISHING CONTACT WITH THE UNIX SYSTEM

When you attempt to contact the UNIX system, you will typically be
using a terminal that is directly wired to a computer or a terminal
that communicates with the system via a telephone connection.

If your terminal has a direct-wired connection, turn on the power and
the message login should appear on the upper left side of the screen
monitor or paper display.

2-11

A0S BRI RSAMAA oD H -3 B SN BABESERD

If you must establish a dial-in connection, do the following:

1. Dial the telephone number that comnects you to the UNIX
system. You will hear one of the following:

» Busy signal, which means circuits are busy. Hang up and
dial again.

~ Continuous ringing and no answer. This usually indicates
that there is trouble with the telephone line or that the
system is inoperable because of mechanical failure or
electronic problems. Hang up and dial again later.

» A high-pitched tone, which indicates the system is accessible.

2. When you receive the high-pitched tone, place the handset of the
phone in the acoustic coupler or momentarily depress the
appropriate button on the data phone set (you can determine this
by referring to the owner’s manual for the equipment) and then
replace the handset in the cradle (Figure 2-3).

3. After a few seconds, the UNIX system should display the login
prompt.

4. If you are greeted with a series of meaningless characters, the
telephone number you called serves more than one baud rate and
the UNIX system is trying to communicate with you but is using
the wrong speed. Depress the BREAK or RETURN key, which
signals the system to try another speed. If the UNIX system does
not display the login prompt within a few seconds, depress the
BREAK or RETURN key once again.

2-12

ESTABLISHING CONTACT WITH THE UNIX SYSTEM

GRS

Figure 2-3. Left, data phone set (Data Set 212A*);
right, modem for data phone set (DATAPHONE® II Modem);
lower right, acoustic coupler

Login Procedure

When the connection is made and the UNIX system prompts for your
login name, type in your login name and depress <CR>. In the
following examples, starship is the login name.

login: starship <CR>

Remember to type in lowercase letters. If you use uppercase letters,
the UNIX system will also use uppercase letters until you log out and
log in again.

* Manufactured by AT&T Technologies, Inc.
® Registered trademark of AT&T

BASICS FOR UNIX SYSTEM USERS

Password

After typing in your login name, the UNIX system prompts you for
your password. In a typical session, you would simply type in your
password followed by <CR>. For security reasons, the UNIX system
will not print (echo) your password on the terminal monitor.

If both your login name and password are acceptable to the UNIX
system, the system prints newsworthy messages for users. These
items might include details about a new system tool or furnish a
schedule for system maintenance. The news items are followed by
the UNIX system command prompt, which is the $ symbol.

Your terminal monitor should look something like the one that
follows when you complete the login sequence successfully:

login: starship <CR>
password:

UNIX system news
$

If you made a typing mistake that you did not correct before
depressing <CR>, the UNIX system displays the message login
incorrect on your terminal monitor and asks you to try again by
printing the login prompt. It is also possible that your
communication link with the UNIX system might be dropped in
which case you would have to try to log in again.

login: ttarship <CR>
password:

login incorrect

login:

ESTABLISHING CONTACT WITH THE UMIX SYSTEM

If you have never logged into the UNIX system, your login procedure
will differ somewhat from the typical one just described. This is
because as a first-time user you were probably assigned a temporary
password when your system account was set up and the system will
not allow you to access its resources until you choose a new one.

This extra step maintains a security requirement, which is that you
choose a password for your exclusive use. Protection of system
resources and your personal files depends on you keeping the
password you select private.

The actual procedure you will follow is determined according to
administration procedures at your computer installation site. A
typical example of what you might be expected to do if you have a
new UNIX system account and you are logging in for the first time
follows.

1. The UNIX system displays the login prompt when you establish
contact with it. You should type in your login name followed by
<CR>.

2. When the UNIX system prints the password prompt, you should
type in your temporary password and depress <CR>.

3. At this point, the system tells you the temporary password has
expired and that it is time to select a new one.

4. The UNIX system asks you to input the old password again.
Type in your temporary password.

5. The system prompts you to input your new password. Type in
the password you choose.

The password you select is usually six to eight characters in
Iength and contains at least one numeric character. In addition,
you can also use special characters. Examples of valid passwords
are: mar84ch, JonathOn, and BRAV3S.

The UNIX system you are using may have different requirements
to consider when choosing a password. Ask another system user
or contact the system administrator if you are not sure of the
specifics.

2-15

BASICS FOR UNIX SYSTEM USERS

6. For verification, the system requests that you re-enter your new
password. Type in the new password once again.

This is a valuable check for you and the UNIX system since a
password is not printed on the terminal monitor.

7. If you do not re-enter the new password exactly as you typed it
the first time, the system tells you that the passwords do not
match and asks you to try the procedure again. On some
systems, however, the communication link may be dropped if
you do not re-enter the password exactly as you typed it the first
time. ¥ this is the case, you must begin the login procedure
again.

When the passwords match, the system displays the $ command
prompt.

The following screen summarizes this procedure for first-time UNIX
system users.

login: starship <CR>
password.: <CR>
Your password has expired.

Choose a new omne.

Old password: <CR>
New password: <CR>
Re-enter new password: <CR>
UNIX system news

$

External Security Code

If you are able to access the UNIX system from outside your computer
installation site, you may need additional information to establish
contact with the UNIX system, such as a special telephone number or
another security code. To determine if this feature is available to
you, contact your system administrator.

2-16

ESTABLISHING CONTACT WITH THE UNIX SYSTEM

Possible Problems When Logging In

A terminal wusually behaves predictably providing you have
configured it properly. Sometimes, however, it may act peculiarly.
For example, each character you type may appear twice on the
terminal monitor or the carriage return may not work properly.

Some problems can be corrected by simply logging off the system and
logging on again. If logging on a second time does not remedy the
problem, you should first check the following and try logging in
once again:

» Keyboard--Keys that are marked CAPS, LOCAL, BLOCK, and so
on should not be enabled, that is, in the locked position. You
can usually disable these keys simply by depressing them.

> Data phone set or modem--If your terminal is connected to the
computer via telephone lines, verify that the baud rate and
duplex settings are correctly specified.

Switches--Some terminals have several switches that must be set
to be compatible with the UNIX system. If this is the case with
the terminal you are using, make sure they are set properly.

)

Refer to the section Required Terminal Settings in this chapter if you
need information to verify the terminal configuration. If you need
additional information about the keyboard, terminal, and data phone
or modem, check the owner’s manuals for the equipment.

Table 2-2 presents a list of procedures you can follow to detect,
diagnose, and correct some problems you may experience when
trying to establish contact with the UNIX system. If none of the
possibilities covered in the table helps you, contact the system
administrator or the person in charge of the UNIX installation at your
location.

8L-¢

TABLE 2-2

Troubleshooting Problems When Logging in*

Problem}

Possible Cause

Action/Remedy

Stream of meaningless characters when
logging in

Input and output is printed in
uppercase letters

Input is printed in UPPERCASE letters,
output in LOWERCASE

Input is printed (echoed) twice

Tab key does not work properly
Communication link cannat be

established in spite of receiving high
pitched tone when dialing in

Communication link between terminal
and UNIX system is repeatedly
drepped on logging in

UNIX system attempting to
communicate at wrong speed

Terminal configuration includes
UTPPERCASE setting

Key marked CAPS or CAPS LOCK is
locked or enabled

Terminal is set to HALF DUPLEX mode
Tabs are not set to advance to next

Terminal is set to LOCAL or OFF-LINE
mode

Terminal is set to LOCAL or OFF-LINE
mode

Depress RETURN or BREAK key

Log off, set character generation to
LOWERCASE, and log in again

Depress the CAPS or CAPS LOCK key
to disable setting

Change setting to FULL DUPLEX mode
Type stty -tabst

Set terminal to ON-LINE operation and
try logging in again

Call system administrator

* Numerous problems can occur if your terminal is not configured properly. To eliminate these possibilities before attempting to log in,
perform the configuration checks listed nn page 2-4.

t Some problems may be specific to your terminal, data set, or modem, check the owner’s manual for this equipment if suggested actions do

not remedy the problem.

} Typing stty -tabs corrects tab setting only for your current computing session. To insure correcl tab sciting for all sessions, add the line

stty -tabs to your profile (see Chapter 7).

SHISN WELSAS XINN HOA S2isve

ESTABLISHING CONTACT WITH THE UNIX SYSTEM

Simple Commands

When the $ command prompt is displayed on your monitor, you
know that the UNIX system recognizes you as an authorized user.
Your response to the $ command prompt is to request UNIX system
programs to run.

Type in the command date and press <CR> after the command
prompt. When you do this, the UNIX system retrieves the date
program and executes it. As a result, your terminal monitor should
look something like the following.

(

$ date<CR>
Wed Oct 12 09:49:44 CDT 1983
$

As you can see, the UNIX system prints the date and the time. In
this example, the CDT stands for Central Daylight Time. Your
terminal monitor will display the appropriate time for your
geographical location.

Now type the command who and depress <CR>. Your screen will
look something like this.

/

$ who<CR>

starship tty00 Oct 12 8:53
mary2 ty02 Oct 12 8:56
acct123 tty05 Oct 12 8:54
jmrs ty06 Oct 12 8:56
$

2-19

BASICS FOR UNIX SYSTEM USERS

The who command lists the login names of everyone currently
working on your system. The tty designations refer to the names of
the special files that correspond to the terminals on which you and
other users are currently working. The login date and time for each
are also given.

Logging Off

When you have completed a session with the UNIX system, you
should type <"d> after the $ command prompt. (Remember that
control characters such as the <"d> are typed by holding down the
control key and depressing the appropriate alphabetic key.) Since
they are nonprinting characters, they do not appear on the terminal
monitor. In a few seconds, the UNIX system should display the login
message again. This indicates you have logged off successfully and
someone else can log in at this time. Your terminal monitor should
look like the one that follows.

$ <*d>
login:

It is strongly recommended that you log off the system using <"d>
before turning off the terminal or hanging up the phone. It is the
only way to assure you have been logged off the UNIX system.

2-20

Chapter 3

USING THE FILE SYSTEM

PAGE

INTRODUCTION veen 3-1
HOW THE FILE SYSTEM IS STRUCTURED rnmmmennRRARRR AR Amnnannnny 3-4
YOUR PLACE IN THE FILE SYSTEM STRUCTURE . - 3-4
Your Home Directory - 3-6
Your Working Directory....... - 3-6
Path Names . MnnmamRRnRRRRAARRAnn .. 3-9
Full Path Names nmAammRRARR AR AR AR nnnnrannanann 3-8
Relative Path Names . 3-12
ORGANIZING A DIRECTORY STRUCTUREoommmnmenenennen Annnnannnnannnnnnnnn 3-16
Creating Directories (mkdir) . Attt rnnnananannaneaannaRARRRnnnn 3-16
Listing the Contents Of @ DIF@CRORY (15) .rurmerenennrmsnssssesccnnnannnenssssnnsnnssnnnnennmennns 3-19
Frequently Used /s Options AR RARRARRARRAR AR AR AR R AR S n A AR AR A AR na e 3-21
Command Summary ... ANaAARRARRRRR AR R aRRAR A AR e anan AR, 3-24
Changing Your Working Directory (cd) Aannananannnnnnnnnn e 3728
ReMOVING DIr@CEOFIES (F11AIF) cerressannunsansnsnsaramaamamnsssssnssnsmsmmmsnensssenessmsmsonsmesnan 3-27
ACCESSING AND MANIPULATING FILES AR RAARRRARARARRA AR ARARR AR AA A AR RAn AR R AR ann 3-29
Basic Commands e 3729

Displaying a File’s Contents (cat, pg, pr) . 3-30

Requesting a Paper Copy of a File (Ip) 3-39
Making a Duplicate Copy of a File (cp) tnnnnananmnnnennennnn 3-41
Moving and Renaming @ File (111)u.woreeeceunnmsnsnmnsnes ween 3-44
REMOVING 8 FHE (£771) 1rnneremnesnnnnessnmnmsnnessamnnansnsssmmssses smeessmsssseeeeeemees s e 3-46
Counting Lines, Words, and Characters im 2 FIHe (We) .uueereeeeeeseeeneessssss 3-47
Protecting Your Files (chmod) resnnnanAAARRRRRA R A AR rnnan .. 3-51
Advanced Commands.. . U, 3-56
Identifying Differences BetWeen FHleS (diff)cmmrmrreeeeseacssnemseecnmsnsnssssncn 3-57
Searching a File for a Pattern (grep) - 3-59
Sorting and Merging Files (sorr) - e 3-62

SUMMARYcocennannnnnnncennnnn . . 3-64

Chapter 3

USING THE FILE SYSTEM

INTRODUCTION

To use the file system effectively you must be familiar with its
structure, know something about your relationship to this structure,
and understand how the relationship changes as you move around
within it. Reading this chapter serves as preparation to use this file
system.

The first ten or so pages should help to give you a working
perspective of the file system. These pages contain information on
the makeup of the file system and om how you fit into its
organization. The remainder of the chapter introduces you to a
number of UNIX system commands. Some you can use to build your
own directory structure, whereas others allow you to access and
manipulate the subdirectories and files you organize within it. And
others still allow you to examine the contents of other directories in
the system that you have permission to look at or to use.

Each command is discussed in a separate subsection in a way that will
allow you to use it effectively. Many of the commands presented in
this section have additional, sophisticated uses; these, however, are
left for more experienced users and are described in other UNIX
system documentation. You can choose to read these sections in the
order in which they are presented in the text or you can opt to read
about the commands and their capabilities in the order that best suits
your interests and purpose. Nevertheless, all the commands
presented are basic to using the file system efficiently and easily. It is
recommended that you read through them thoroughly and then try
them out. Before viewing how the file system is structured, however,
let’s take a look at the structure of a command.

3-1

USING THE FILE SYSTEM

For the UNIX system to understand your intentions when using
commands, you must take care to see that you input commands using
the correct format, called the command line syntax. The command
line syntax provides a procedure for ordering elements in a command
line. It serves the same purpose as putting words in a certain
sequence or order so that you can meaningfully express your ideas
and thoughts to others. Without sentence structure, people would
have difficulty interpreting what you mean. Similarly, without
command line syntax, the UNIX system shell cannot interpret your
request.

Command line syntax consists of one or more of the following
elements separated by a blank or blanks and followed by pressing the
carriage return <CR> key:

command opiion(s) argument(s)
where
command is the name of the program you wish to run,
option modifies how the command runs, and

argument specifies data on which the command is to focus or
operate (usually a directory or file name).

A command line can simply contain a command name followed by
<CR>, or it can list options and/or arguments in addition to the
command. If you specify options and arguments on the command
line, you must separate them with at least one blank. Blanks can be
typed by pressing the space bar or the tab key. If a blank is part of
the argument name, enclose the argument in double quotation marks,
for example, "sample 1".

3-2

INTRODUCTION

Some commands allow you to specify multiple options and/or
arguments on a command line. Consider the following command
line:

Command
Arguments

Options

Iy

P N
we—1 —wfilel file2 file3

In this example, we is the name of the command and two options —1
and —w have been specified. (The UNIX system usually allows you
to group options such as these to read —lw if you prefer.) In
addition, three files--filel, file2, and file3--are specified as arguments.
Although most options can be grouped together, arguments cannot.

The following examples show the proper sequence and spacing in
command line syntax:

Incorrect Correct
wcfile we file
we—lfile we —1 file
we —1 w file we —lw file
or
we —1 —w file
wce filelfile2 wc filel file2

You can refer back to the ground rules on command line syntax as
you read and work through the chapter.

3-3

USING THE FILE SYSTEM

HOW THE FILE SYSTEM IS STRUCTURED

The file system is comprised of a set of directories, ordinary files, and
special files. These components provide you with a way to organize,
retrieve, and manage information electronically. Chapter 1 introduced
you to directories and files, but let’s review what they are before
learning how to use them to tap the resources of the file system.

In general, a directory is a collection of files and other directories.
Specifically, it contains the names of these files and directories. You
can build a directory to organize the files you create on the basis of
some similarity. An ordinary file is a collection of characters that is
stored on a disk. Such a file may contain text for a status report you
type or code for a program you write. Any information you wish to
save must be written into a file. And a special file represents a
physical device, such as your terminal.

The set of all the directories and files is organized into a treelike
structure. Figure 3-1 helps you to visualize this. It shows a single
directory called root as the source of a sample file structure. By
descending the branches that extend from root, several other major
system directories can be reached. By branching down from these,
you can, in turn, reach all the directories and files in the file system.
In this hierarchy, files and directories that are subordinate to a
directory have what is called a parent/child relationship. This type
of relationship is possible for many generations of files and
directories, giving you the capability to organize your files in a
variety of ways.

YOUR PLACE IN THE FILE SYSTEM STRUCTURE

When you are interacting with the UNIX system, you will be doing
so from a location in its file system structure. The UNIX system
automatically places you at a specific point in its file system every
time you log in. From that point, you can move through the
hierarchy to work in any of the directories and files you own and to
access those belonging to others that you have permission to use.

The following sections describe your place in relation to the file
system structure and how this relationship changes as you move
through the file system.

3-4

YOUR PLACE IN THE FILE SYSTEM STRUCTURE

waysAs ofg sjdweg ‘[-¢ smdj

el
Lol ookt ‘aj0su02

siep

sa|i4 |etosds = D
$8ji4 ABUIpIO = D
sauojIBg = O

3-5

USING THE FILE SYSTEM

Your Home Directory

When you successfully complete the login procedure, the UNIX
system positions you at a specific point in its file system structure
called your login or home directory. The login name that was
assigned to you when your UNIX system account was set up is
usually the name of this home directory. In fact, every user with an
authorized login name has a unique home directory in the file
system.

The UNIX system is able to keep track of all these home directories
by maintaining one or more system direciories that organize them.
For example, let’s say that the name of one of these system directories
is userl, and that it contains the home directories of the login names
starship, mary2, and jmrs. Figure 3-2 shows you how a system
directory like userl ranks in relation to the other important UNIX
system directories you read about in Chapter 1.

Within your home directory, you can create files and additional
directories (sometimes called subdirectories) to organize them, you
can move and delete these files and directories, and you can control
who can access your files and directories. You have full
responsibility for everything you create in your home directory
because you own it. Your home directory is a vantage point from
which to view all the files and directories it holds. It is also a point
from which to view the file system all the way up to root.

Your Working Directory

As long as you continue to work in your home directory, it is
considered your current or working directory. If you move to
another directory, that directory becomes your new working
directory.

There is a UNIX system command called pwd, which stands for print
working directory, that you can use to verify the name of the
directory in which you are currently working. For example, if your

3-6

w

3
-~

O = Diractories
D =Ordinary Filas
v =Special Files

console 1ty00 11y01
date cat gemes
@ e

T8 @ &

) -

Figure 3-2. A directory that organizes home directories is equivalent to directories like bin and tmp in the file system

FUNLINYLS WALSAS 14 FHL NI 30V 1d HNOA

USING THE FILE SYSTEM

login name is starship and you issue the pwd command in response to
the first $ prompt after logging in, the UNIX system should respond
as follows:

$ pwd<CR>
[user1] starship
$

The system vreply indicates that your working directory is
Juserl/starship. Technically, [userl/starship is the full or complete
name of the working directory. The name of a directory like
{user1/starship or a file is also referred to as a path name.

Printing the complete or full path name of your working directory in
response to a pwd command is a courtesy that the UNIX system
extends to you. The full path name indicates your exact position in
terms of the file system structure.

We will analyze and trace this path name in the next few pages so
you can start to move around in the file system. For now, it is
sufficient to say that what /[userl/starship tells you is that the root
directory [/ (indicated by the leading slash in the line) contains the
directory userl, which in turn contains the current working directory,
which is starship. All other slashes in the path name are simply used
to separate names of directories and files.

Remember, you are never more than issuing a pwd command away
from determining where you are in the file system. Issuing the pwd
command. will be especially helpful if you try to read or copy a file
and the UNIX system tells you that the file you are trying to access
does not exist. You may be surprised to find that you are in a
different directory than you thought.

To provide you with a quick summary of what you can expect the
pwd command te do, a recap of how to use it follows.

3-8

YOUR PLACE IN THE FILE SYSTEM STRUCTURE

Command Recap

pwd - print full name of working directory

command options arguments
pwd none none
Description: pwd prints the full path name of the directory in

which you are currently working.

Remarks: If the system responds with messages, such as,
cannot open directory or read error in directory, there
may be problems with the file system. Inform
the system administrator.

Path Names

Every file and directory in the UNIX system is identified by a unique
path name. The path name tracks or indicates the location of the file
or directory relative to the structure of the system. In addition to
identifying the location of a file or directory in the file system
structure, a path name provides directions to that file or directory.
Knowing how to follow the directions the path name gives is your
key to moving around the directory structure successfully.

In the file system, there are two types of path names--full and
relative. Let’s take a closer look at both types.

Full Path Names

A full path name (sometimes called an absolute path name) gives you
directions that take you from the root directory down through a
unique sequence of directories that leads to a particular directory or
file. You can use a full path name to reach any file or directory in
the UNIX system in which you are working. A full path name
always starts at the root of the file system and its leading character is
a [(slash). The final name in a full path name can be either a file
name or a directory name. All other names in the path must be
directories.

3-9

USING THE FILE SYSTEM

To understand how a full path name is constructed and where it can
lead you, let’s use the sample file system (Figure 3-2) and say that you
are in the directory starship. If you issue the pwd command, the
system responds by printing the full path name of your working
directory, which is [userl/starship.

We can analyze the elements of this path name using the following
diagram.

System
Directory Home
Root Directory
Delimiter

L4

fuserl/starship
where:
/ (leading) = Root of the file system when it is the first character
in the path name,
user] = System directory one level below root in the

hierarchy to which root points or branches,

| (subsequent) = Slash that separates or delimits the directory

names, userl and starship, and

starship = Current working directory, which is also the home
directory.

Now look at Figure 3-3, it traces the full path to /userl/starship
through the sample file system we are using.

3-10

Li-g

O = Directeries
D =Ordinary Files
v = Special Files

consate, 1yo1 4
date cal gamss
L]] ()

Figure 3-3, Heavy bold lines trace the fuil path name of the directory /user1/starship

SUNLONYLS WILSAS 34 IHL N 3OV Id HIOA

USING THE FILE SYSTEM

Relative Path Names

A relative path name is the name of a file or directory that varies
with relation to the directory in which you are currently working.
From your working directory, you can move "down" in the file system
structure to access files and directories you own or you can move "up”
in the hierarchy through generations of parent directories to the
grandparent of all system directories, the root. A relative path name
begins with a directory or file name, with a . (dot), which is a
shorthand notation for the directory in which you are currently
located, or a .. (dot dot), which is a shorthand notation for the
directory immediately above your current working directory in the
file system hierarchy. The .. (dot dot) is called the parent directory of
the one in which you are currently located, which is the current
directory or . (dot).

For example, if you are in the home directory starship in the sample
system and starship contains directories named draft, leiters, and bin
and a file named mbox, the relative path name to any of these is
simply its name, be it draft, letters, bin, or mbox. Figure 3-4 traces the
relative path name from starship to draft.

Now, let’s say the draft directory belonging to starship contains the
files outline and table. Then, the relative path name from starship to
the file outline is written as draft/outline.

Figure 3-5 traces this relative path. Notice that the slash in this path
name separates the directory named draft from the file named outline.
Here, the slash is a delimiter that indicates that outline is subordinate
to draft; that is, outline is a child of its parent, draft.

Thus far, the discussion of relative path names covered how to
specify names and directories of files that belong to, or are children
of, your current directory--in other words, to descend the system
hierarchy level by level until you reach your destination. You can
also, however, ascend the levels in the system structure or ascend and
subsequently descend into other files and directories.

To ascend to the parent of your working directory, you can use the ..
notation. This means that if you are in the directory named draft in
the sample file system, .. is the path name to starship, and ..[.. is the
path name to stgrship’s parent directory userl. From draft, you could

3-12

YOUR PLACE IN THE FILE SYSTEM STRUCTURE

O = Directories
D =0rdinary Files

mbox

outline table

sanders

jehnson

display

list

Figure 3-4. Relative path name for the draft directory is

traced with heavy bold lines

also trace a path to the file sanders in the sample system by using the
path name ../letters/sanders (.. brings you up to starship, then down to

letters, and finally sanders).

Keep in mind that you can always use a full path name in place of a

relative one.

3-13

USING THE FILE SYSTEM

O = Directories
I:] =0Ordinary Files

list mbox

outline table sanders | |johnson display list

Figure 3-5. The relative path draft/outline is traced in bold lines

In summary, some examples of full and relative path names would
be:

Path Name Meaning

/ Full path name of the root directory
for the file system.

/bin Full path nmame of the bin directory
that contains most executable

programs and utilities.

(continued on next page)

3-14

YOUR PLACE IN THE FILE SYSTEM STRUCTURE

Path Name Meaning

/user1/starship/bin/tools Full path name of the directory called
tools belonging to the directory bin
that belongs to the directory starship
belonging to userl that belongs to
root.

bin/tools Relative path name to the file or
directory tools in the directory bin. If
the current directory is /, then the
UNIX system searches for /bin/tools.
But, if the current directory is starship,
then the system searches the full path
{user1/starship/bin/tools.

fools Relative path name of a file or
directory tools in the working
directory.

Knowing how to follow path names, such as in these examples, and
move about in the file system is a skill tantamount to being able to
read and follow a map when you are traveling in a new or unfamiliar
place.

It might take some practice to move around in the file system with
confidence. But this is to be expected when learning a new concept
and the techniques to use it.

To give you a chance to try your hand at moving about in the
system’s structure, the remainder of the chapter introduces you to the
UNIX system commands that make it possible for you to peruse the
file system. If you lose track of where you are in the system’s
structure, use the pwd command to identify your location.

3-15

USING THE FILE SYSTEM

ORGANIZING A DIRECTORY STRUCTURE

This section introduces you to four UNIX system commands that
make it possible for you to organize and use a directory structure.
These commands and what you can expect them to do are as follows:

mkdir - Allows you to create or make new directories and
subdirectories within your current directory,

1s -~ Allows you to list the names of all the subdirectories
and files in a directory,

cd -- Provides you with the ability to change your location
from one directory to another in the file system, and

rmdir - Lets you remove a directory when you no longer have
a need for it.

All of the commands can be used with path names--full or
relative --when organizing a directory structure and when moving to
the directories and subdirectories you organize, as well as when
navigating to directories in the file system that belong to others that
you have permission to access. Two of the commands--ls and
cd --can also be used without a path name.

Each of the commands is described more fully in the four sections
that follow. In addition, a summary called a command recap is given
for each command. The command recaps allow you to review quickly
the command line syntax and the capabilities of each command.

Creating Directories (mkdir)

It is recommended that vou create subdirectories in your home
directory according to some logical and meaningful scheme to help
you retrieve information you will keep in files. A convenient way to
organize your files is to put all files pertaining to one subject together
in a directory.

To create a directory, the UNIX system provides you with the mkdir
command, which stands for make directory. In the sample file

3-16

ORGANIZING A DIRECTORY STRUCTURE

system, the draft subdirectory in the home directory starship, for
example, may have been built by inputting the following while
located in starship:

$ mkdir draft<CR>
$

The $ response to the mkdir command indicates that a directory
named draft was successfully created.

Similarly, the other subdirectories named letters and bin were created
with the same command, as indicated in the following screen:

$ mkdir letters<CR>
$ mkdir bin<CR>
$

All the subdirectories (draft, letters, bin) could have been created in
one command with the same results, as the following screen shows:

$ mkdir draft letters bin<CR>
$

You can also move to a subdirectory you created and build additional
directories if necessary and reasonable. When you build directories,
or create files for that matter, you can name them anything you wish
as long as you keep in mind the guidelines presented in the
following list.

3-17

USING THE FILE SYSTEM
» The name of a directory (or file) can be from one to fourteen
characters in length.
- All characters other than / are legal.

= Some characters are best avoided, such as a blank or space, a tab,
or a backspace, and the following:

@#S & () [I\ | ;7" <>

If you use a blank or tab in a directory or file name, you must
enclose the name in quotation marks on the command line.

» Avoid using the +, — or . as the first character in names.
« Uppercase and lowercase characters are distinct to the UNIX

system. For example, the directory or file named draft would not
be the same as the directory or file named DRAFT.

Examples of legal directory or file names would be:

memo MEMO section? ref:list
file.c chap3+4 item1-10 outline

See the command recap that follows for a quick reference to mkdir’s
capabilities.

Command Recap
mkdir - make a new directory

command options arguments
mkdir none directoryname(s)
Description: mkdir creates a new directory (subdirectory).
Remarks: The system returns the $ prompt if the directory

is successfully created.

3-18

ORGANIZING A DIRECTORY STRUCTURE

Listing the Contents of a Directory (Is)

All directories in the file system have information about the files and
directories they contain, such as name, size, and the date last
modified. You can obtain this information about what your working
directory and other system directories contain by using the Is
command.

The Is command, which stands for list, lists the names of the files and
subdirectories of the directory you specify by path name. If you do
not specify a path name, Is lists the names of files and directories in
your working directory. To demonstrate how the ls command works,
let’s use the sample file system (Figure 3-2) once again.

You are logged into the UNIX system and the shell responds to your
pwd command with the line /userl/starship. To display the names of
files and directories in the working directory, you would type
Is<CR>. After this sequence, your terminal should read:

($ pwd<CR>

$ /userl/starship
$ Is<CR>

bin

draft

letters

list

mbox

$

As you can see, the system responds by listing the names of files and
directories in the working directory starship in alphabetical order. If
the first character of any of the file or directory names was a number,
or a capital letter, it would have been printed first.

3-19

USING THE FILE SYSTEM

Now, if you want to print the names of files and subdirectories in a
directory other than your working directory without moving from
your working directory, you should use the command format:

Is directoryname <CR>

where the directory name is the full or relative path name of the
desired directory. This means that you can print the contents of draft
while you are working in starship by inputting Is draft<CR>.

$ 1s draft<CR>
outline
table

$

In the example, draft is a relative path name from starship to draft. By
the same token, you could print the contents of the userl directory,
which is the parent of the starship by typing:

/

$1s .<CR>
jmrs

mary?2

starship

$

where .. is the relative path name from starship to userl. You could
also list the contents of userl by typing lIs [userl <CR> (since [userl
is the full path name from root to userl) and get the identical listing.

Similarly, you can list the contents of any system directory that you
have permission to access using the Is command and a full or relative
path name.

3-20

ORGANIZING A DIRECTORY STRUCTURE

The 1s command is particularly useful if you have a long list of files
and you are trying to determine whether one of them exists in your
working directory. For example, if you are in the directory draft and
you wish to determine if the files named outline and notes are there,
you can use the Is command as follows:

$ Is outline notes<CR>
outline
notes not found

$

The output on the terminal monitor shows that the system
acknowledges the existence of outline by printing its name, but says
that the file notes is not found.

By the way, the ls command will not print the contents of a file. If
you wish to see what a file contains, you can use the cat, pg, or pr
command, which are described in the section of this chapter entitled
Accessing and Manipulating Files.

Frequently Used /s Options

The Is command also accepts options that cause specific attributes of a
file or subdirectory to be listed. There are more than a dozen
available options for the 1s commands. Of these, the —a and —1 will
probably be most valuable in your basic use of the UNIX system.
Refer to the UNIX System User Reference Manual for information and
details on the other options.

Listing All Names in a File. Some important file names in your
home directory begin with a . (dot), such as .profile, . (the current
directory), and .. (the parent directory). The 1s command will not

3-21

USING THE FILE SYSTEM

print these names unless you use the —a option in the command line.
Thus, to list all files in your working directory starship, including
those that start with a . (dot), type 1s —a<CR>. The terminal
should look something like this:

-~

$ Is —a<CR>

.profile
bin
draft
letters
list
mbox

$

Listing Contents in Long Format. Probably the most informative 1s
option is —1. If you type Is —1<CR> while in the starship directory,
you would get the following:

/

$ 1s —I<CR>

total 30

drwxr-xr-x 3 starship project 96 Oct 27 08:16 bin
drwxr-xr-x 2 starship project 64 Nov 1 14:19 draft
drwxr-xr-x 2 starship project 80 Nov 8 08:41 letters
- rWX-—-——~ 2 starship project 12301 Nov 2 10:15 list
-rW----——- 1 starship project 40 Oct 27 10:00 mbox
$

3-22

ORGANIZING A DIRECTORY STRUCTURE

After the command line, the first line of output, tofal 30, shows the
amount of memory used, which is measured in chunks called blocks.
Next is one line for each directory and file. The first character in
each of these lines tells you what kind of file is listed, where:

d = Directory,
— =Ordinary disk file,
b = Block special file, and

¢ = Character special file.

The next several characters, which are either letters or hyphens,
describe who has permission to read and use the file or directory.
(Permissions are discussed with the chmod command in the section
entitled Accessing and Manipulating Files in this chapter.) The
following number is the link count, which in the case of a file, equals
the number of directories it is in, or in the case of a directory, also
includes the number of directories immediately under it in the file
system structure. Next is the login name of the owner of the file,
which is starship, and then the group name of the file or directory,
which is project. The following number indicates the length of the
file or directory entry measured in units of information (or memory)
called bytes. Then there is the month, day, and time that the file was
last modified. Finally, the file or directory name is given.

Figure 3-6 sums up what you get when you list the contents of a
directory in long format.

3-23

USING THE FILE SYSTEM

Number of Owner
blocks used name
Number of
Number Group characters
of links name Name
total 30
dlrwxr-xr-x 3 starship project 96 Oct 27 08:16 bin
File dirwxr-xr-x 2 starship project 64 Nov 1 14:19 draft
type d|rwxr-xr-x 2 starship project 80 Nov 8 08:41 letters
- |rwx--~--- 2 starship project 12301 Nowv 2 10:15 list
- rw--————- 1 starship project 40 Oct 27 10:00 mbox

. o

! !

Time/date last
Permissions modified

Figure 3-6. Description of output produced by the Is —1 command

Command Summary. Following is a recap of capabilities provided
by the Is command and two available options. See the UNIX System
User Reference Manual for information on other available options.

3-24

ORGANIZING A DIRECTORY STRUCTURE

Command Recap

Is - list contents of a directory

command options arguments
Is —a, —1, and others* directoryname(s)
Description: Is lists the names of the files and subdirectories

in the specified directories. If no directory name
is given as an argument, the contents of your
working directory are listed.

Options: —a Lists all entries, including those beginning
with . (dot).

—1 Lists contents of a directory in long format
furnishing mode, permissions, size in bytes,
and time of last modification.

Remarks: If you want to read the contents of a file, use the
cat command.

* See the UNIX System User Reference Manual for all available options and an
explanation of their capabilities.

Changing Your Working Directory (cd)

When you first log into the UNIX system, you are placed in your
home directory, which becomes your current or working directory.
You may, however, wish to work in a different directory for any
number of reasons. For example, you might want to create a file in a
specific directory, you may need to make corrections to a file in
another directory, or you may wish to obtain information by reading
a file in a different directory.

Whatever the reason, the UNIX system provides you with the cd
command that allows you to move around in its directory structure.
When you use the ¢d command to move to a new directory, that
directory becomes your working directory.

3-25

USING THE FILE SYSTEM

To use the ed command, enter the command:

cd newdirectory-pathname <CR>

where the path name, whether full or relative, to the new directory is
optional. Any valid path name of a directory can be used as an
argument to the ¢d command. If you use the cd command without
specifying a path name, it will move you to your login directory
regardless of where you are in the file system.

When you specify a valid directory path name on the command line,
the UNIX system moves you to that directory. For example, to move
from the starship directory to the child directory draft in the sample
file system, type c¢d draft<<CR>. In this example, draft is the relative
path name to the desired directory. When you get the $ prompt,
verify your new location by typing pwd<CR>. Your terminal
monitor should look something like the following after going
through this sequence:

$ cd draft<CR>
$ pwd<CR>
[user/starship|draft
$

Now that you are in the draft directory you can access the files and
directories in it, in this case, the files outline and table. You can also
create subdirectories in draft with mkdir and additional files with the
ed and vi commands. (See Chapter 4 for general information on the
ed and vi commands and Chapter 5 and Chapter 6 for tutorials on
using the ed and vi commands, respectively.)

You may also use full path names with the cd command. For
example, to move to the letters directory from the draft directory, you
could use the command

cd [userl/starship/letters <CR>

where [userl/starship/letters is the full path name to letters.

3-26

ORGANIZING A DIRECTORY STRUCTURE

Or, since lefters and draft are both children of starship, you could use
the cd command with the relative path name ..[letters. The
notation moves you to the directory starship, and the remainder of the
path name moves you to letters.

If you wish to return to your home directory after perusing the file
system, simply type cd<CR>. The cd command with no arguments
returns you to your login directory.

Command Recap

c¢d - change your working directory

command options arqguments
cd none directoryname
Description: cd changes your position in the file system from

the current directory to the directory specified. If
no directory name is given as an argument, the
cd command places you in your home directory.

Remarks: When the shell places you in the directory
specified, the $ prompt is returned to you. You
will also receive a $ prompt when you issue the
c¢d command with no argument. To access a
directory that is not in your working directory,
you must substitute the full or relative path name
in place of a simple directory name.

Removing Directories (rmdir)

If you decide you no longer need a directory, you can remove it with
the rmdir command. The rmdir command, which stands for remove
a directory, removes a directory if that directory does not contain
subdirectories and files, or, in other words, if the directory is empty.

3-27

USING THE FILE SYSTEM

If the directory you are attempting to remove is not empty, rmdir
will not remove it unless you remove the contents of the directory
first. In addition, you are not allowed to remove directories
belonging to other system users unless you have permission to do so.

The standard format for the rmdir command is:
rmdir directoryname(s) <CR>

where one or more directory names can be specified.

If you were to attempt to remove the directory bin in the sample file
system, the UNIX system would respond in the following manner:

$ rmdir bin<CR>
rmdir: bin not empty

$

To remove the directory bin with the rmdir command, you would first
have to remove the files display and list and the subdirectory tools. If
you wish to remove files, see the section entitled Accessing and
Manipulating Files in this chapter. To remove any subdirectories like
tools, use the rmdir command. The system will return the $ prompt
in response to the rmdir command when the directory specified in
the command line is empty.

The command recap that follows summarizes how rmdir works.

3-28

ACCESSING AND MANIPULATING FILES

Command Recap

rmdir - remove a directory

command options arguments
rmdir none directoryname(s}
Description: rmdir removes named directories if they do not

contain files and/or subdirectories.

Remarks: If the directory is empty, the system returns the $
prompt when the directory is removed. If the
directory contains files or subdirectories, the
message, rmdir: directory name not empty is
returned to you.

ACCESSING AND MANIPULATING FILES

This section introduces you to several UNIX system commands that
access and manipulate files in the file system structure. Information
in this section is organized into two parts--basic and advanced. The
part devoted to basic commands is fundamental to your using the file
system; the advanced commands offer you more sophisticated
information processing techniques when working with files. You
may skip reading the advanced section if you do not need to use the
commands it covers.

Basic Commands

This section discusses UNIX system commands that are important to
your being able to access and use the files in your directory structure.
Specifically, these commands and their capabilities are:

cat - OQOutputs the contents of a file you name,

rg -- Prints on a video display terminal the contents of a file
you name in chunks or pages,

3-29

USING THE FILE SYSTEM
pr -~ Prints on your terminal a partially formatted version of
the file you name,

Ip -~ Allows you to request a paper copy of a file from a
device called the line printer,

cp -- Makes a duplicate copy of an existing file,
mv --Moves and renames a file,
rm -- Permanently removes a file when you no longer need it,

wWe -- Counts the lines, words, and characters in a file, and

chmod --Changes permission modes for a file (and a directory).

Each command is covered in one of following sections. A command
recap follows the discussion of each command allowing you to review
quickly the command line syntax and command capabilities.

Displaying a File’s Contents (cat, pg, pr)

The UNIX system provides three commands that allow you to display
and print the contents of a file or files--cat, pg, and pr. The cat
command, which stands for concatenate, outputs the contents of files
you specify by name on the command line, and displays the result on
your terminal unless you tell cat to direct the output to another file
or a new command. The pg command is particularly useful when
you wish to read the contents of a lengthy file or a number of files
because the command displays the text of a file in chunks or pages, a
screenful at a time at your direction on a video display terminal. The
pr command partially formats and outputs the files you specify on
your terminal unless you direct the output to a paper printing device
(see the lp command in this chapter).

The following three sections describe how to use these commands.

Concatenate and Print Contents of a File (cat). The cat command
displays the contents of a file or files. For example, if you are located
in directory letters in the sample file system and you wish to display
the contents of the file johnson, you would type cat johmson<CR>
and the following output would appear on the terminal.

3-30

ACCESSING AND MANIPULATING FILES

Command Recap

rmdir - remove a directory

command options arguments
rmdir none directoryname(s)
Description: rmdir removes named directories if they do not

contain files and/or subdirectories.

Remarks: If the directory is empty, the system returns the $
prompt when the directory is removed. If the
directory contains files or subdirectories, the
message, rmdir: directory name not empty is
returned to you.

ACCESSING AND MANIPULATING FILES

This section introduces you to several UNIX system commands that
access and manipulate files in the file system structure. Information
in this section is organized into two parts--basic and advanced. The
part devoted to basic commands is fundamental to your using the file
system; the advanced commands offer you more sophisticated
information processing techniques when working with files. You
may skip reading the advanced section if you do not need to use the
commands it covers.

Basic Commands

This section discusses UNIX system commands that are important to
your being able to access and use the files in your directory structure.
Specifically, these commands and their capabilities are:

cat - Outputs the contents of a file you name,

1533 -- Prints on a video display terminal the contents of a file
you name in chunks or pages,

3-29

USING THE FILE SYSTEM
pr -- Prints on your terminal a partially formatted version of
the file you name,

ip - Allows you to request a paper copy of a file from a
device called the line printer,

cp -- Makes a duplicate copy of an existing file,

mv --Moves and renames a file,

rm -~ Permanently removes a file when you no longer need it,
wc -~ Counts the lines, words, and characters in a file, and

chmod --Changes permission modes for a file (and a directory).

Each command is covered in one of following sections. A command
recap follows the discussion of each command allowing you to review
quickly the command line syntax and command capabilities.

Displaying a File’s Contents (caf, pg, pr)

The UNIX system provides three commands that allow you to display
and print the contents of a file or files—cat, pg, and pr. The cat
command, which stands for concatenate, outputs the contents of files
you specify by name on the command line, and displays the result on
your terminal unless you tell cat to direct the output to another file
or a new command. The pg command is particularly useful when
you wish to read the contents of a lengthy file or a number of files
because the command displays the text of a file in chunks or pages, a
screenful at a time at your direction on a video display terminal. The
pr command partially formats and outputs the files you specify on
your terminal unless you direct the output to a paper printing device
(see the lp command in this chapter).

The following three sections describe how to use these commands.

Concatenate and Print Contents of a File (cat). The cat comamand
displays the contents of a file or files. For example, if you are located
in directory letters in the sample file system and you wish to display
the contents of the file johnson, you would type cat johmnson<CR>
and the following output would appear on the terminal.

3-30

ACCESSING AND MANIPULATING FILES

$ cat johnson<CR>

This file contains a letter

to Mr. Johnson on the topic of
office automation.

$

As you can see, the contents of the file are diépiayed after the
command line and are followed by the $ prompt.

To display the contents of two {or more) files, like johnson and sanders,
simply type $ cat johnson sanders<CR> and the cat command
reads johnson and sanders and displays their contents in that order on
your terminal.

$ cat johnson sanders <CR>
This file contains a letter

to Mr. Johnson on the topic of
office automation.

This file contains a letter

to Mrs. Sanders inviting her to
speak at our departmental
meeting.

$

To direct the output of the cat command to another file or to a new
command, see the section in Chapter 7 that discusses redirecting input
and output.

The command recap that follows summarizes what you can expect the
cat command to do.

3-31

USING THE FILE SYSTEM

Command Recap

cat - concatenate and print a file’s contents

command options arguments
cat available* filename(s)
Description: cat reads the name of each file given on the
command line and displays the contents of the
files.
Remarks: If the file(s) exist, the contents are displayed on

the terminal monitor; if not, the message cat:
cannot open filename is returned to you.

If you wish to display the contents of a directory,
use the Is command.

* See the UNIX System User Reference Manual for all available options and an
explanation of their capabilities.

Paging Through the Conftents of a File (pg). The pg command, short
for page, allows you to examine the contents of a file or files
screenful by screenful on a video display terminal. The pg command
displays the text of a file in chunks or pages followed by a colon ().
After displaying the colon, the system pauses and waits for your
instructions to proceed. For example, your instructions can request
pg to continue displaying the file’s contents a page at a time or you
can ask pg to search through the file(s) to locate a specific character
pattern. Table 3-1 summarizes some of the instructions you can give
pg after the colon is displayed.

3-32

ACCESSING AND MANIPULATING FILES

TABLE 3-1

Summary of Selected Commands for pg*

Commandi Meaning
h Help; display list of available pg commands
q or Q Quit pg perusal mode
<CR> Display next page of text
1 Display next line of text
d or "d Display additional half page of text
.or 1 Redisplay current page of text
f Skip next page of text, and display following one
n Begin displaying next file you specified

on command line

Display previous file specified on command line

$ Display last page of text in file currentl
play pag y
displayed

/pattern / Search forward in file for specified character
pattern

“pattern” Search backward in file for specified character
pattern

* See the UNIX System User Reference Manual for a detailed explanation of all available
pg commands.

1 Most commands can be typed with a number preceding them: +1 (display next page),
—1 (display previous page), or 1 (display first page of text).

The pg command is especially useful when you wish to peruse a long
file or a series of files because the system pauses after displaying each
page allowing you as much time as you need to examine it. The size
of the page displayed depends on the terminal you are using. For
example, on a video display terminal with a window capable of
showing 24 lines, 23 lines of text and a line containing the colon
will be displayed as a page. However, if the file is less than 23 lines
long, the page size will be the number of lines in the file plus the
line containing the colon.

3-33

USING THE FILE SYSTEM

To peruse the contents of a file with pg, use the following command

line format:

For example, to display the contents of the file outline in the sample
file system, type pg outline<CR> and the first page of the file will
appear on the screen. Since the file has more lines in it than can be
displayed in one page, the colon indicates there is more to be looked
at when you are ready. Pressing the <CR> key will print the next

pg filename(s) <CR>

page of the file.

The following screen summarizes what has been done thus far.

.

$ pg outline<CR>

After you analyze the subject for your
report, you must consider organizing and
arranging the material you wish to use in
writing it.

An outline is an effective method of
organizing the material. The outline
is 4 type of blueprint or skeleton,

a framework for you the builder-writer
of the report; in a sense it is a recipe
<CR>

N

3-34

ACCESSING AND MANIPULATING FILES

After pressing the <CR> key, the pg program will resume
outputting the file’s contents on the screen as follows:

4 2

that contains the names of the
ingredients and the order in which
to use them.

Your outline need not be elaborate or
overly detailed; it is simply a guide you
may consult as you write, to be wvaried,
if need be, when additional important
ideas are suggested in the actual writing.
(EOF):

_ /

In addition to the remainder of the file’s contents, a line with the
output (EOF): is displayed. The EOF designates that you have
reached the end of the file and the colon is your cue for the next
instruction.

When you have completed examining the file, you can type q or Q
followed by pressing the <CR> key and the $ prompt will appear
on your screen. Or you can choose to use one of the other available
commands given in Table 3-1 depending on your needs.

In addition, there are a number of options that can be specified on
the pg command line. Refer to the UNIX System User Reference
Manual if you are interested in learning more about them.

The following command recap summarizes the highlights of pg’s
capabilities.

3-35

USING THE FILE SYSTEM

Command Recap

pg - display a file’s contents in chunks or pages

command options arguments
pe available* filename(s)
Description: pg reads the name of each file given on the

command line and displays the contents of the
file(s) in chunks or pages, screenful by screenful.

Remarks: After displaying a screenful of text, the pg
command awaits your instruction to continue to
display text, to search for a pattern of characters,
or to exit the pg perusal mode. In addition, a
number of options are available for you to use
with pg on the command line. For example, you
can start to display the contents of file at a
specific line or at a line containing a certain
sequence or pattern or you can opt to go back
and review text that has already been displayed.

* See the UNIX System User Reference Manual for all available options and an
explanation of their capabilities.

Print Partially Formatted Contents of a File (pr). The pr command is
typically used to prepare files for printing. You can expect the pr
command to title, paginate, supply headings, and print a file
according to varying page lengths and widths on your terminal
monitor unless you specify that it prints on another output device,
such as a line printer (read the discussion on the lp command in this
section), or you direct the printing to a different file (see the section
on redirecting input and output in Chapter 7).

If you choose not to specify any of the available coptions, the pr
command produces output that is in a single column with 66 lines
per page and is preceded by a short heading. The heading consists of
five lines--two blank lines; a line containing the date, time, file name,
and page number; and two more blank lines. And the formatted file
is followed by five blank lines. (Complete sets of text formatting

3-36

ACCESSING AND MANIPULATING FILES

tools, called nroff and troff, are available on UNIX systems equipped
with the appropriate application software. Check with your system
administrator to see if this software is available to you.)

Typically, the pr command is used in tandem with the lp command
to provide a paper copy of text as it was entered into a file. (See the
section discussing the lp command for details.) However, you can
also use the pr command to format partially and print the contents of
a file on your terminal. For example, to review the contents of the
file johnson in the sample file system, type in the command
pr johnsen<CR>. The following screen summarizes this activity.

$ pr johmson<CR>
Nov 29 09:19 1983 johnson Pagel
This file contains a letter

to Mr. Johnson on the topic of
office automation.

Note that the ellipses after the last line in the file stand for the
remaining 58 lines (all blanks in this case) that pr formatted into the
output. If you are working on a video display terminal, which
typically allows you to view about 24 lines at a time, the entire
66 lines of the formatted file will print continuously and rapidly to
the end of file. This means that the first 41 lines will "roll" off the
top of your screen making it impossible for you to read them unless
you have the ability to "roll" or "page" back a screen or two. If you
are looking at a particularly long file, this feature might not solve the
problem.

3-37

USING THE FILE SYSTEM

In this case, you should use the control-s <"s> combination to stop
printing on your terminal temporarily and control-q <"q> to resume
the printing.

The command recap that follows summarizes what you can expect the
pr command to do.

Command Recap

pr - print partially formatted contents of a file

command options arguments
pr available* filename(s)
Description: pr produces a partially formatted copy of a file(s)

on your terminal monitor unless otherwise
specified. The program prints the text of the
file(s) on 66-line pages and places five blank lines
at the bottom of each page and a five-line
heading at the top of each page. The heading
consists of two blank lines; a line containing the
date, time, file name and page number; and two
additional blank lines.

Remarks: If the specified file(s) exists, the contents are
partially formatted and displayed on the screen;
if not, the message pr: can’t open filename is
returned to you.

The pr command is most commonly used with
the Ip command when a paper copy of a file is
needed. However, when using the pr command
to review a file on a video display terminal, use
<"¢> and <"q> to temporarily stop and start
printing the file.

* See the UNIX System User Reference Manual for all available options and an
explanation of their capabilities.

2-38

ACCESSING AND MANIPULATING FILES

Requesting a Paper Copy of a File (lp)

At some point in time, you may want a paper copy of a file. Some
terminals have built-in printers that allow you to get paper copies of
files. In this case you simply need to turn the printer on and then
use cat or pr to print the file. If, however, you wish to obtain a
higher quality paper copy, you should consider using the Ip
command. The lp command, which stands for line printer, allows
you to request a line-printing device to furnish you with a paper
copy of a file or files (Figure 3-7).

Figure 3-7. Examples of TELETYPE Meodel 40 line printers; left,
printer with tractor feed belt; upper right, printer with tractor
feed; bottom right, printer with high-speed tractor feed

The line printer or types of line printers that you have access to
depends on what your UNIX system facility has to offer. You should
ask your system administrator for the names of the line printers

3-39

USING THE FILE SYSTEM

available to you. Or you can type lpstat —v<CR> to obtain a
complete listing of every accessible line-printing device.

The basic format for the command is:

Ip file<CR>

For example, to print the file letters on a line printer, you would type
Ip letters<CR> on the command line. In turn, the system would
provide you with the name of the device or type of device on which
the file will be printed and an identification (id) number indicating
your request. The following screen summarizes this activity.

$ 1p letters<CR>
Request id is laser-6885 1 file
$

The system response indicates that your job is to be printed on a laser
line-printing device (the system default), has a request id number of
6885, and is to include the printing of one file.

Using the —ddest (destination) option on the command line would
cause your file to be printed on another available device that you
name in place of dest. Using the —m option would cause mail to be
sent to you indicating when the job is completed.

If you would like to cancel the request to lp to print the file letters,
type cancel laser-6885<CR>, where laser-6885 is the request id.
The lpstat command gives the status and request id of the line
printer jobs.

A command recap follows that summarizes what you can expect of
the 1p command.

3-40

ACCESSING AND MANIPULATING FILES

Command Recap

Ip - request paper copy of file from a line printer

command options arguments
Ip —d, —m, and others* file(s)
Description: lp requests that specified files be printed by a
line printer, thus providing paper copies of the
contents.

Options: —ddest Allows you to choose dest as the printer
or type of printer that is to produce the
paper copy. If you do not use this
option, the lp program specifies the
printer for you.

—m Sends a message to you via mail after
the printing is complete.

Remarks: You can cancel a request to the line printer by

typing cancel and the request id furnished to you
by the system when the request was
acknowledged.

Check with the system administrator for
information on additional and/or different
commands for printers that may be available at
your location.

* See the UNIX System User Reference Manual for all available options and an
explanation of their capabilities.

Making a Duplicate Copy of a File (cp)

When using the UNIX system, you may wish to make a copy of a file.
For example, you might want to revise a file while leaving the
original version intact. The UNIX system provides you with the cp
command, short for copy, which copies the complete contents of one
file into another. The c¢p command also allows you to copy one or

3-41

USING THE FILE SYSTEM

more files from one directory into a different directory while leaving
the original file or files in place.

To copy the file named outline to a file named new.outline in the
sample directory, simply type cp outline new.outline<CR>. The
system returns the $ prompt when the copy is made. To verify the
existence of the new file, you can type Is<CR>, which lists the
names of all files and directories in the current directory, in this case
draft. The following screen summarizes the activity.

($ cp outline new.outline<CR>
$ Is<CR>

new.outline

outline

table

$

You know from looking at the sample file system that the file
new.outline did not exist before the cp command to copy outline to
new.outline was given. However, if it had, it would have been
replaced by a copy of the file outline and the previous version of
new.outline would have been deleted.

If you had tried to copy the file outline to another file named outline in
the same directory, the system would have told you that the file
names were identical and returned the $ prompt to you. If you listed
the contents of the directory to determine exactly how many copies of
outline exist, the terminal monitor would look something like the
following:

$ cp outline outline<CR>

cp: outline and outline are identical
$ Is<CR>

outline

table

$

3-42

ACCESSING AND MANIPULATING FILES

As you can see, the UNIX system does not allow you to have two files
with the same name in a directory.

You could, however, copy the file named outline from the directory
draft to another file named outline in the directory named letters by
using any of the following command lines assuming you are
currently in draft:

cp outline ../letters/outline <CR>

cp outline ../letters <CR>

cp outline /userl/starship/letters/outline <CR>
cp outline [userl/starship/letters <CR>

A copy of the file outline would reside in both directories draft and
letters after using one of these commands since each of them contains
a legal path name to the file outline. From this example, you can see
that the UNIX system allows you to have files with identical names as
long as they are in different directories.

If you would like to copy the file outline in the directory draft to a file
named outline.vers? in the directory letiers, you could use either of the
following command lines:

cp outline ../letters/outline.vers2<CR>
cp outline /userl/starship/letters/outline.vers2 <CR>

Keep in mind the conventions for naming directories and files given
in the section entitled Creating Directories in this chapter.

The following recap summarizes how the ¢p command works.

3-43

USING THE FILE SYSTEM

Command Recap

cp - make a copy of a file

command options arguments
filel file2
cp none file(s) directory
Description: cp allows you to make a copy of filel and call it

file2 leaving filel intact, or to copy one or more
files into a different directory.

Remarks: When copying filel to file2 and file2 already exists,
the cp command will overwrite the first version
of file2 with a copy of filel calling it file2. The
first version of file2 is deleted.

You cannot copy directories with the cp
command.

Moving and Renaming a File (muv)

The mv command allows you to rename a file in the same directory
or to move a file from one directory to another. If you move a file to
a different directory, the file can be renamed or it can retain its
original name.

To rename a file in a directory, use the following command:

mv filel file2 <CR>

The mv command changes a file’s name from filel to file2. Remember
that the names filel and file2 can be any valid names, including path
names.

For example, if you are in the directory draft in the sample file system
and you would like to rename the file table as new.table, simply type
mv table new.table<CR>. You should receive the $ command

3-44

ACCESSING AND MANIPULATING FILES

prompt if the command executed successfully. To verify that the file
new.table exists, you can list the contents of the directory by typing
Is<CR>. In turn, the terminal should read:

$ mv table new.table <CR>
$ Is<CR>

new.table

outline

$

You can also move a file from one directory to another keeping the
file’s name the same or changing it to a different one. To do so, use
the following command line.

mv file(s) directory <CR>

where the file and directory names can be any valid names, including
path names.

To move the file table from the current directory named draft (whose
full path name is /user1/starship/draft) to a file with the same name in
the directory letters (whose relative path name from draft is ../letters
and whose full path name is [userl/starship/letters), any one of several
command lines can be used, including the following:

mv table /userl/starship/letters <CR>

mv table [userl/starship/letters/table <CR>

mv table ../letters <CR>

mv table ../letters/table <CR>

mv [userl/starship/draft/table [userl/starship/letters/table<CR>

The file table could have been renamed table2 when moving it to the
directory letters using any of the following:

mv table /userl/starship/letters/table2 <CR>
mv table ../letters/table2 <CR>
mv [userl/starship/draft/table2 /userl/starship/letters/table2<CR>

3-45

USING THE FILE SYSTEM

You can verify that the command worked by listing the contents of
the directory with the Is command.

Refer to the recap that follows for a summary of how the mv
command works.

Command Recap

mv - move or rename files

command options arguments
filel file2
mv none file(s) directory
Description: mv allows you to change the name of a file or to

move a file(s) into another directory.

Remarks: When changing the name of filel to file2 and file2
already exists, the mv command will overwrite
the first version of file2 with filel and rename it
file2. The first version of file2 is deleted.

Removing a2 File (rm)

When you no longer need a file, you can get rid of it by using the rm
command, which is short for remove.

To remove one or more files, use the format:

rm file(s)<CR>

After the command executes, the file(s) you specified are removed
permanently.

To remove a file named new.outline in the current directory type
rm new.outline<CR> and list the contents of the directory with the
1s command to verify that the file new.outline no longer exists.

3-46

ACCESSING AND MANIPULATING FILES

To remove more than one file, such as the files outline and table, type
rm outline table<CR> and list the contents of the directory by
typing Is<CR>.

$ rm outline table<CR>
$ Is<CR>
$

The $ response indicates that the files named outline and table were
removed permanently.

The following recap summarizes how the rm command works.

Command Recap

rm - remove a file

command options arguments
rm available* file(s)
Description: rm allows you to remove one or more files.
Remarks: Files specified as arguments to the rm command

are removed permanently.

* See the UNIX System User Reference Manual for all available options and an
explanation of their capabilities.

Counting Lines, Words, and Characters in a File (wc)

The we command, which stands for word count, reports the number
of lines, words, and characters there are in a file that you specify by
name on the command line. If you name more than one file, the wc

3-47

USING THE FILE SYSTEM

program counts the number of lines, words, and characters in each
specified file and then totals the counts. In addition, you can direct
the wc program to give you only a line, a word, or a character count
by using the —1, —w, or —c options, respectively.

To determine the number of lines, words, and characters in a file, use
the following format on the command line:

we filel<CR>

When you do, the system responds with a line in the format:

1 w c filel

where
I = Number of lines in filel,
w =Number of words in filel, and

¢ = Number of characters in filel.

For example, to count the lines, words, and characters in the file
johnson in the current directory letters, type wc johmson<CR>. The
terminal monitor would show the following output:

$ wc johnson<CR>
3 14 78 johnson
$

The system response displays the line count (3), the word count (14),
and the character count (78) for the file johnson.

To determine the number of lines, words, and characters in more
than one file, use the following format:

we filel file2<CR>
3-48

ACCESSING AND MANIPULATING FILES

In turn, the system responds with the following format:

I w ¢ (filel
l w c file2
1 w C total

where line, word, and character counts are displayed for filel and file2
on separate lines and the combined counts appear on the last line
called total.

If you request that the wc program count lines, words, and characters
in the files johnson and sanders in the current directory, the system
would respond as follows:

$ wc johnson sanders<CR>
3 14 78 johnson
4 16 95 sanders
7 30 173 total

In this case, the first line of the system response shows the line,
word, and character counts for the file johnson. The second line of
output gives line, word, and character counts for sanders. The last
line of output shows combined line, word, and character counts for
both files in the line labeled total.

If you prefer to get only a line, a word, or a character count, select
the appropriate format from the following lines:

we —1 file1l<CR> (line count)
we ~w filel<CR> (word count)
we —c filel<CR> (character count)

3-49

USING THE FILE SYSTEM

For instance, by typing wec —1 sanders<CR> on the command line
you would obtain the following output:

$ we —1 sanders<CR>
4 sanders

The system tells you that the number of lines in the file sanders is 4 in
answer to specifying —1. If the —w or —c option was specified for
that file, the UNIX system would have responded with the number of
words or number of characters, respectively, in the file.

The command recap that follows summarizes how the wc command

works.

Command Recap

wc¢ - count lines, words, and characters in a file

command options arguments
wce -1, —w, —c file(s)
Description: we counts lines, words, and characters in the
file(s) named keeping a total count of all tallies
when more than one file is specified.
Options —1 Counts the number of lines in the specified
file(s).
—w Counts the number of words in the specified
file(s).
—¢ Counts the number of characters in a
specified file(s).
Remarks: When a file name is specified in the command

line, it is printed with the count(s) requested.

3-50

ACCESSING AND MANIPULATING FILES

Protecting Your Files (chnod)

The chmod command, short for change mede, allows you te decide
who can read, alter, and use your files and who cannot. Because the
UNIX operating system is a multiuser system, you are not working
alone in the file system: you and other system users can follow path
names and run system commands to move to various directories and
to read and use files belonging to one another if you have permission
to do so.

If you own a file, then you are able to determine who has the right to
read that file, to make changes to or write the file, and to run or
execute the file if it is a program. These permissions are defined as:

ﬁ
0

Allows system users to read a file or to copy its

contents,

w = Allows system users to write changes into a file or
copy of a file, and

x = Permits system users to run an executable file.

Specifically, you can determine who in the population of UNIX
system users is entitled to these various permissions and who is not
according to the following classifications:

u = You, the user and login owner of your files and
directories,

8§ = Members of the group to which you belong (the group
could consist of team members working on a project,
members of a department, or a group arbitrarily
designated by the person who set up your UNIX
system account), and

o = All other system users.

When you create a file or a directory, the system automatically grants
or denies permission specifically to you, members of your group, and
other system users. You can alter this automatic action to some extent
by modifying your environment, which is discussed in Chapter 7.
Regardless of how the permissions are granted when a file is created,
as the owner of the file or directory it is up to you to allow current

3-51

USING THE FILE SYSTEM

permissions to remain in effect or to change them to suit your
purposes and the situation. For example, you may wish to keep
certain files private and for your use only. Or you may wish to grant
permission to read and to write changes into a file to members of
your group and all other system users as well. Or you may share a
program with members of your group by granting them permission
to execute it.

How to Determine Existing Permissions. You can determine what
permissions are currently in effect on a file or a directory by using
the command that produces a long listing of a directory’s content,
which is ls —1. For example, typing ls —1<CR> while in the
directory named starship/bin in the sample file system would produce
the following output:

-

$ Is ~1<CR>

total 35

-rwxr-xr-x 1 starship project 9346 Nov 1 08:06 display
-rwx--x--x 1 starship project 6428 Dec 2 10:24 list
drwx--x--x 2 starship project 32 Nov 8 15:32 tools
$

Permissions for the files display and list and the directory tools are
shown on the left of the terminal monitor under the line total 35, and
look like:

TWXI-XT-X (file display)
TWX-~X-~X (file Iist)
TWX~=X~-X (directory tools)

These nine characters represent three groups of three characters. The
first set of three characters refers to your (or the user’s/owner’s)
permissions, the second set to members of the group, the last set to
all other system users. Within each set of characters, the r, w, and x
indicate the permission currently enabled for the groups. If a dash
appears instead of an r, w, or x, permission to read, write, or execute
is denied.

3-52

ACCESSING AND MANIPULATING FILES

The following diagram summarizes this breakdown for the file named
display.

User Group Others
Loutan saten sube
IWX E-XF-X
\ Permission to write to
the file denied to
read group and other
write
execute

As you can see, the owner has r, w, and x permissions and members
of the group and other system users have r and x permissions.

How to Change Existing Permissions. After you have determined
what permissions are in effect, you can change them using the
following format:

chmod whe + (or —) permission file(s)<CR>

where:

chmod =Name of program,

who =One of three user groups u, g, o
u = User,
g = Group, and
0 = Other.
+ — = Instruction that grants (+) or denies (—) permission.

3-53

USING THE FILE SYSTEM

permission = Authorization to r, w, or x:
r = Read,
w = Write, and
x = Execute.

file(s) = File (or directory) name(s) listed; assumed to be
branches from your working directory, unless you use
full path (names).

This may sound a bit confusing. But, a few examples on how to use
the chmod command should help to make permission possibilities
clear.

Let’s use the permissions for the file display to experiment with
chmeod. You can see from the permissions that as the user and owner
of display you can read, write, and run this executable file. You can
protect the file against accidentally changing it by denying yourself
write (w) permission by typing the command line chmod
u—w display<CR>. After receiving the $ prompt, type in
Is —1<CR> to verify the permission has changed.

$ chmod u—w display <CR>

$ 1s —1<CR>

total 35

-r-xr-xr-x 1 starship project 9346 Nov 1 08:06 display
-rwx--x--x 1 starship project 6428 Dec 2 10:24 list
drwx--x--x 2 starship project 32 Nov 8 15:32 tools
$

From this output, you can see that you no longer have permission to
write changes into the file, that is, unless you change the mode back
to include write permission.

Now, let’s consider another example. Notice that permission to write
into the file display has been denied to members of your group and
other system users. These users, however, have read permission,
which means that any of these users can copy the file into their own
directories and then make changes to it. To prevent all system users

3-54

ACCESSING AND MANIPULATING FILES

from copying this file, you could deny them read permission by
typing chmod go—r display<CR>. The g and o stand for group
members and all other system users, respectively, and the —r denies
them permission toc read or copy the file. Check the results with the
Is —1 command.

-

$ chmod go—r display<CR>

$ Is —1<CR>

total 35

-rwx--x--x 1 starship project 9346 Nov 1 08:06 display
~rwx--x--x 1 starship project 6428 Dec 2 10:24 list
drwx--x--x 2 starship project 32 Nov 8 15:32 tools
$

A Note on Permissions and Directories. If you read the preceding
pages describing the chmod command, you might have gathered that
you can use this command to grant or deny permission for directories
as well as files. It is true, you can. To do so, simply use the directory
name instead of a file name on the command line.

The impact, however, of granting or denying permissions for
directories to various system users is worth considering. For example,
if you grant read permission for a directory to yourself (u), members
of your group (g), and other system users (o), every user who has
access to the system can read the names of the files that directory
contains by using the Is —1 command. Similarly, granting write
permission allows the designated users to create new files in the
directory and change and remove existing ones. And granting
permission to execute the directory allows the designated users the
ability to move to that directory (and make it their working directory)
by using the cd command.

An Alternate Method. The chmod method described in the
preceding pages is one of two ways to change permissions to read,
write, and execute files and directories. The method previously
described uses symbols, such as r, w, x and u, 8, o, to specify
instructions to chmod. Hence, it is called the symbolic method.

3-55

USING THE FILE SYSTEM

The alternate method uses a number system called octal that is
different than the decimal number system we typically use on a
day-to-day basis. This method uses three octal numbers ranging from
0 through 7 to assign permissions. If you wish to use the octal
method when changing permission, see the description of chmeod in
the UNIX System User Reference Manual.

Summary. The command recap that follows provides a quick
reference on how chmod works.

Command Recap

chmod - change permission modes for files (and directories)

command instruction arguments
chmod who + — permission filename(s)
directoryname(s)
Description: chmod gives (+) or removes (—) read, write, and

execute permissions for three types of system
users: user (you), group (members of your group),
and other (all other users able to access the system
on which you are working).

Remarks: The instruction set can be represented in either
octal or symbolic terms.

Advanced Commands

You will become more and more familiar with the file system as you
use the commands thus far discussed in this chapter. As this
familiarity increases so might your need or interest for more

3-56

ACCESSING AND MANIPULATING FILES

sophisticated information processing techniques when working with
files. This section introduces you to three commands that give you
just that. These commands and their capabilities are listed as follows:

diff -- Finds difference between two files,
grep - Searches a file for a pattern, and

sort -- Sorts and merges files.

The following discussion only scratches the surface on information
processing techniques available with the UNIX system. You may
refer to the UNIX System User Reference Manual for additional
information.

Identifying Differences Belween Files (dif)

The diff command locates all the differences between two files and
proceeds to tell you how to change the first file to be a carbon copy
of the second. It reports all differences between the files.

The basic format for the command is:

diff filel file2 <CR>

If filel and file2 are identical, the system returns the $ prompt to you.
If not, the diff command instructs you on how to bring the first file
into agreement with the second by using line editor (ed) commands.
(See Chapter 5 for details on the line editor.) The UNIX system flags
lines in filel with the < symbol and file2 with the > symbol.

3-57

USING THE FILE SYSTEM

For example, if you use the diff command to identify differences
between the files johnson and sanders, the system would respond as
follows:

-

$ diff johnson sanders <<CR>
2,3c2,4

< to Mr. Johnson on the topic of
< office automation.

> to Mrs. Sanders inviting her to
> speak at your departmental

> meeting.

$

The first line of the system response is
2,3c2,4

which means lines 2 through 3 in the file johnson must be changed
(designated by c) to lines 2 through 4 in the file sanders. The system
then displays lines 2 through 3 in the file johnson as follows:

< to Mr. Johnson on the topic of
< office automation.

and lines 2 through 4 in the file sanders

> to Mrs. Sanders inviting her to
> speak at our departmental
> meeting.

If you make these changes (using the ed or the vi text editing
program), the file johnson will be identical to the file sanders.
Remember, the diff command tells you exactly what the differences
are between the named files. If you simply want an identical copy of
a file, use the cp command.

3-58

ACCESSING AND MANIPULATING FILES

Refer to the recap that follows for a summary of what you can expect
the diff command to do when no options are specified. See the
reference to the UNIX System User Reference Manual for details on
available options.

Command Recap

diff - finds differences between two files

command options arguments
diff available* filel file2
Description: diff reports what lines are different in two files

and what you must do to make the first file
identical with the second.

Remarks: Instructions on how to change a file to bring it
into agreement with another file are line editor
(ed) commands: a (append), ¢ (change), or d
(delete). Numbers given with 4, ¢, or d indicate
the lines to be modified. Also used are the
symbols < (indicating a line from the first file)
and > (indicating a line from the second file).

* See the UNIX System User Reference Manual for all available options and an
explanation of their capabilities.

Searching a File for a Pattern (grep)

You can request the UNIX system to search through files for a specific
word, phrase, or group of characters by using the grep command.
Technically, grep means globally search through a file or files to
locate a regular expression and print the lines that contain the
regular expression. Put simply, a regular expression is the pattern of
characters--be it a word, a phrase, or an equation--that you stipulate.

The basic format for the command line is:

grep pattern file(s)<CR>

3-59

USING THE FILE SYSTEM
Thus, to locate the line containing the word automation in the file
johnson, you would type:

grep antomation johnson<CR>

and the system would respond as follows:

$ grep automation johmnson<CR>
office automation

$

The output gives you all the lines in the file johnson that contain the
pattern for which you were searching, which is the word automation.

If the pattern contains multiple words or any characters that have a
special meaning to the UNIX system, such as $, |, *, ?, and so on, the
entire pattern must be enclosed in single quotes. (For an explanation
of the special meaning for these and other characters see the section
entitled Metacharacters in Chapter 7, Shell Tutorial.) For example, if you
are interested in locating the lines containing the pattern office
automation, the command line and systeimn response would read:

$ grep ‘office automation” johnson<CR>
office automation.
$

But what if you could not recall to whom you sent a letter on the
topic of office automation in the first place--Mr. Johnson or Mrs.
Sanders? You could type:

grep ‘office automation’ johmson sanders <<CR>

3-60

ACCESSING AND MANIPULATING FILES

If you did, the system would respond in the following manner:

$ grep ‘office automation’ johnson sanders<CR>
johnson:office automation.

$

The output tells you that the pattern office automation is found once in
the file johnson.

In addition to the capabilities of the grep command that are
summarized in the recap that follows, the UNIX system provides
variations to the basic grep command, called egrep and fgrep, along
with several options that further enhance the searching powers of the
command. See the UNIX System User Reference Manual if you are
interested in learning more.

Command Recap

grep - searches a file for a pattern

command options arguments
grep available* pattern file(s)
Description: grep searches the file or files you name for lines

containing a pattern and then prints the lines
that match. If you name more than one file, the
name of the file containing the pattern is given
also.

Remarks: If the pattern you give contains multiple words
or special characters, enclose the pattern in single
quotes on the command line.

* See the UNIX System User Reference Manual for all available options and an
explanation of their capabilities.

3-61

USING THE FILE SYSTEM

Sorting and Merging Files (sort)

The UNIX system provides you with an efficient tool called seort for
sorting and merging files. The basic form of the command line is:

sort file(s) <CR>

which causes lines in the specified files to be sorted and merged in
the order defined by the ASCII representations of the characters in
the lines.

» Lines beginning with numbers are sorted by digit and listed
before letters in the output,

» Lines beginning with uppercase letters are listed before lines
beginning with lowercase letters, and

» Lines beginning with symbols, such as *, %, or @, are sorted on
the basis of the symbol’s ASCII representation.

To get an idea of how the sort command works, let’s say that you
have two files, named phasel and phase2, each containing a list of
names that you wish to sort alphabetically and finally interfile into
one list. First, display the contents of each file using the cat
command.

$ cat phasel<CR>
Smith, Allyn

Jones, Barbara

Cook, Karen

Moore, Peter

Wolf, Robert

$ cat phase2 <CR>
Frank, M. Jay
Nelson, James

West, Donna

Hill, Charles
Morgan, Kristine

$

3-62

ACCESSING AND MANIPULATING FILES

(Note: we could have used the command line
cat phasel phase2<CR>> instead of listing the contents of each file
separately.)

Now, sort and merge the contents of the two files using the sort
command. Note that the output of the sert program will print on the
terminal monitor unless you specify otherwise.

($ sort phasel phase2<CR>
Cook, Karen

Frank, M. Jay
Hill, Charles
Jones, Barbara
Moore, Peter
Morgan, Kristine
Nelson, James
Smith, Allyn
West, Donna
Wolf, Robert

$

In addition to putting together simple listings as in the previous
examples, the sort command can rearrange the lines and parts of lines
(called fields) according to a number of other specifications you can
designate on the command line. The possible specifications are
complex and are not within the scope of this text. You should
consult the UNIX System User Reference Manual for a full rundown on
the available options.

However, the following command recap summarizes the capabilities
of the sort program.

3-63

USING THE FILE SYSTEM

Command Recap

sort - sorts and merges files

command options arguments
sort available* file(s)
Description: sort sorts and merges lines from the file or files
you name and displays the result on your
terminal.
Remarks: If no options are specified on the command line,

lines are sorted and merged in the order defined
by the ASCII representations of the characters in
the lines.

* See the UNIX System User Reference Manual for all available options and an
explanation of their capabilities.

SUMMARY

This chapter described the structure of the file system and presented
ways to use and to navigate through the file system via UNIX system
commands. The next chapter gives you an overview of a variety of
UNIX system capabilities, such as text editing, using the shell as a
command language, communicating electronically with other system
users, and programming and developing software.

3-64

Chapter 4

UNIX SYSTEM CAPABILITIES

PAGE

INTRODUCTION ...coreemennnne wnnennnesnmmRnnnannELRAL 4-1
TEXT EDITING ..oneeeireserencmnemnmmnnnannnannananansenmnnssananssssnnnnn 4-1
What Is a Text Editor?....cccmmmmrrmmemnsnnmemnnnnnnnans e A2
How Does a Text Editor Work?. eannnnnmansnnnnnnnanRRRnnn 4-2
Text Editing Buffers 4-2

Modes of Operation S, 4-3

Line Editor... 4-4
Screen Editor nnaRanARRAAnARaRnn R ARy 4-5
WORKING IN THE SHELL .occonmnenmmmmnnrnnnnnsnsannannnennnnnnssnnanans 4-6
Using Shell Shorthandcccceemmrecnesnnsnanssmessnnnnenn - e 4T
Redirecting the Flow of Input and Quiput RRRAmAmnnnmnnnmanRnn R nnana 4-9
Redirecting the Standard OUIPUL () .cnemmeeemnmcenmsssssssnsnnsssssnoemnmsnnmnennesnnnns 4-11
Redirecting and Appending the Standard Output (> >) ..oveeeeeensenmenmammmenns 4-13
Redirecting the Standard Input (<) ...coo........ . 4-13
Connecting Commands with the Pipe (|) . veen A-14
Summary . annnnmnnnmmenmnnannnannnnan 4-16
Running Multipie Programs... N AAARSARRR AR ARR AR AR AR AR RN AR A AR R 8 n e e A 4-16
Executing Commands in Sequence..... R RAAan e A nnRn AR aRn g nnanan 4-16
Executing Commands Simultaneously - 4-17
Customizing Your Computing Environment AnmmanasnmaRaRaRnnn.nanRaan 4-19
COMMUNICATING ELECTRONICALLY .cueennnnnneeennnnnnnnn 4-20
PROGRAMMING IN THE SYSTEM . ennanneananRRERan e nm 4-21
Programming in the Shellcceeurereeannnmnannnnasnnnsssnannnnnnsnnssnnans 4-21
Programming in the C LLAMGUAGEccweennmmnncnnnrmmnnnnnnnsnnnnes 4-23
Other Programming LamQuUAgesawemnmmnnsnenneonenennn . . 4-24
Tools to Aid Software Development.......ccecornnn . e 4-25
Source Code Control SYSEEM (SCCS) ummmmmrmmmmmrmmmmasnnssnsssssmmmmmnmnnsssnsssanmenan 4-25
REMOLE JOB ENEFY (RIE) ..oonennensenenosnsssanmannannnsanssssnssmnsssssssssnmmnssnnnnssnmenan 4-26
Maintaining Programs (make) 4-26
Generating Programs for Lexical Tasks (Jex) 4-27

Generating Parser Programs (Vacc) .ameemssssasansennssssnsn 4-27

Chapter 4

UNIX SYSTEM CAPABILITIES

INTRODUCTION

This chapter serves as a transition between the first three chapters in
the overview part of this guide and the four tutorials that follow.
The material in this chapter combines basic, fundamental concepts
about the UNIX system covered in the first three chapters of this
guide with information about system capabilities that you may use to
do your computing work efficiently and effectively.

This chapter provides an overview of the following UNIX system
capabilities: text editing, working in the shell, communicating
electronically, and programming in the UNIX system environment.
In addition, it serves as an introduction to chapters 5, 6, 7, and 8--Line
Editor Tutorial, Screen Editor Tutorial, Shell Tutorial, and Communication
Tutorial, respectively.

TEXT EDITING

You have read a good deal about files up to this point simply because
using the file system is a way of life in a UNIX system environment.
The information in this section will enhance your knowledge about
manipulating files by introducing you to a software tool called a text
editor. A text editor provides you with the ability to create and
modify files: it will help you to fare well in the UNIX system since a
considerable amount of your computing time may be spent writing
and revising letters, memos, reports, or source code for programs that
will be stored in files.

This section contains information that tells you what a text editor is
and how it works. In addition, this section acquaints you with two
types of text editors supported on the UNIX system: the line editor
and the visual, or screen, editor. Since you will probably come to
prefer one of these editing programs over the other--even if you
learn to use them equally well--the line editor and the screen editor

4-1

UNEX SYSTEM CAPABILITIES

are briefly compared to help you to assess their capabilities. For
detailed information on the line editor and the screen editor, see
Chapter 5 and Chapter 6.

What Is a Texi Editor?

When you write or type letters, memos, and reports and then decide
to change what you have written or typed, you will use skills
required in text editing. These skills include inserting new or
additional material, deleting unneeded material, transposing material
(sometimes called cutting and pasting), and finally preparing a clean,
corrected copy. Text editors perform these tasks at your direction
making writing and revising text much easier and quicker than if
done by hand or on a typewriter.

In the UNIX system, a text editor is much like the UNIX system shell.
Both a text editor and the shell are programs that accept your
commands and then perform the requested functions--essentially,
they are both interactive programs. A major difference between a text
editor and the shell, however, is the set of commands that each
recognizes. All the commands you have learned up to this point
belong to the shell’s command set. A text editor, on the other hand,
has its own distinct set of commands that allow you to create, move,
add, and delete text in files, as well as acquire text from other files.

How Does a Text Editor Work?

To understand how a text editor works you need information about
the environment created when you use an editing program and the
modes of operation understood by a text editor.

Text Editing Buffers

To create a new file, you must ask the shell to put the editor in
control of your computing session. When you do, a temporary work
space is allocated to you by the editor. This work space is called the
editing buffer, in it you can enter information you want the file to
hold and modify it if you wish.

Because you are in a temporary work space when using a text editor,
the file you are creating along with the changes you make to it are
also temporary. This work space allotment and what it is holding

4-2

TEXT EDITING

will exist only as long as you work in the editing program. If you
wish to save the file, you must tell the text editor to write the
contents of the buffer into a storage area. If you do not tell the editor
to write or record what you have done during the editing session, the
buffer’s contents will disappear when you leave the editing program.
If you forget to write a new file or update an existing one, the text
editors remind you to do so when you attempt to leave the editing
environment.

To modify an existing file, the procedure is almost identical to the
one you follow when creating a new file. First, call the editor and
give it the name of the file you wish to change. In turn, the editor
makes a copy of the file that is in the storage area and places it in the
buffer so you can work on it.

When you finish editing the file, you can write the buffer’s contents
into storage and leave the editing program knowing the file is
updated and ready to be recalled when you need it again. Or you
can chose to leave the editor without writing the file if you have
made a critical mistake or you are unhappy with the edited version.
This step leaves the original file intact and the edited copy
disappears.

Regardless of whether you are creating a new file or updating an
existing one, the text you put in the buffer is organized into lines. A
line of text is simply the series of characters that appears horizontally
across a row of typing that is ended by pressing the <CR> key.
Occasionally, files may contain a line of text that is too long to fit on
the terminal monitor. Some terminals will automatically display the
continuation of the line on the next row of the monitor, whereas
others will not.

Modes of Operation

Text editors are capable of understanding two modes of operation:
the command mode and the text input mode.

When you begin an editing session, you will automatically be placed
in command mode. In command mode, all your input is interpreted
as a command. Typical editing commands allow you to move about
in a file, search for patterns in the file's contents, or print a portion of
a file on the terminal monitor. The input mode is entered when you

4-3

UMIX SYSTEM CAPABILITIES

use a command to create text. Once in input mode, what you type on
the keyboard is placed into the buffer as part of the text file until you
send the appropriate instruction to the editor that returns you to
command mode.

You may occasionally lose track of the mode in which you are
working by attempting to enter text while in command mode or by
trying to enter a command while in input mode. This is something
even experienced users do from time to time. It will not take long to
recognize the mistake and it will be apparent what to do to remedy
these situations as you work through the tutorials in Chapter 5 and
Chapter 6.

Line Editor

The line editor, accessed by the ed command, is a fast, versatile
program for preparing text files. This editor gets its name because it
operates on the lines of text a file holds. For example, to change a
single character in a file, you specify the line of the file that contains
the character you wish to change and then specify the change.

Put simply, you manipulate text on a line-by-line basis with the line
editor. Commands for this text editor can change lines, print lines,
read and write files, and initiate text entry. In addition, you can
specify the line editor to run from a shell program; something you
cannot do with the screen editor. (See Chapter 7 for information on
basic shell programming techniques.)

The line editor works equally well on paper printing terminals and
video display terminals. It will also obligingly accommodate you if
you are using a slow-speed telephone line.

Refer to Chapter 5, Line Editor Tutorial, for instructions on how to use
this editing tool. Alsc see Appendix D for a summary of line editor
commands. If you are interested in a comparison of line editor (ed)
and screen editor (vi) features, see Table 4-1.

4-4

TABLE 4-1

TEXT EDITING

Comparison of Line (ed) and Screen (vi) Editors

Feature

Line Editor (ed)

Screen Editor (vi)

Recommended
terminal type

Paper-printing or VDT*

VDT

Speed Accommodates high- Works best via high-
and low-speed data speed data
transmission lines. transmission lines

(1,200+ baud).

Versatility Can be specified to run ~ Must be used
from shell scripts as well interactively during
as used during editing editing sessions.
sessions.

Sophistication = Changes text quickly. Changes text easily.
Uses comparatively However, can make
small amounts of heavy demands on
processing time. computer resources.

Power Provides a full set of Provides its own

editing commands.
Standard UNIX system
text editor.

editing commands and
recognizes all line
editor commands as
well.

* VDT = video display terminal

Screen Editor

The screen editor, accessed by the vi command, is a display-oriented,
interactive software tool. When you use the screen editor, your
terminal acts as a window to let you view the file you are editing a
screenful or page at a time. This editor works most efficiently and
effectively when used on a video display terminal operating at 1,200
or higher baud.

For the most part, modifications to a file (such as, additions, deletions,
and changes) are accomplished by positioning the cursor at the point
in the window where the modification is to be made and then
making the change. In other words, the screen editor displays the
effects of editing changes in the context in which you make them.

4-5

UNIX SYSTEM CAPABILITIES

Because of this feature, the screen editor in considered to be much
more sophisticated than the line editor.

Furthermore, the screen editor offers a replete collection of
commands. For example, a number of screen editor commands allow
you to move the cursor around within the window to a file. Other
commands move the window up or down through a page or more of
the file. Still other commands allow you to change existing text or to
create new text. In addition to its own set of commands, the screen
editor has access to all the commands offered by the line editor. This
arsenal of commands accounts for the screen editor’s tremendous
power.

There is, however, a trade-off for the screen editor’s speed, visual
appeal, efficiency, and power, which is the heavy demand that it
places on the computer’s processing time. For example, a simple
change might cause an entire screen to need updating. Moreover, if
simple changes lead to long delays while you wait for a screen to be
updated, the pleasant experience of using a visual-oriented editor can
be somewhat diminished.

Refer to Chapter 6, Screen Editor Tutorial, for instructions on how to
use this software. And see Appendix E, which contains a summary of
screen editor commands. If you wish to compare the features of the
line editor (ed) and the screen editor (vi) see Table 4-1.

WORKING IN THE SHELL

Every time you log into the UNIX system you will be communicating
directly with a program called the shell. You will continue to
interact with the shell until you log off the system, unless you use a
program, such as a text editor, that temporarily suspends your
dealings with the shell until you are finished using that particular
program.

The shell is much like other programs, except that instead of
performing one job, as cat or Is does, it is central to most of your
interactions with the UNIX system. This is because the shell’s
primary function is to act as an interpreter between you and the
computer on which the UNIX system is running. As an interpreter,

4-6

WORKING IN THE SHELL

the shell translates your requests into language the computer
understands, calls requested programs into memory, and executes
them.

This section acquaints you with some of the ways you can use the
shell as the command language interpreter to simplify a computing
session and to enhance your ability to use system features. In
addition to running a single program for you, you can also use the
shell to:

= interpret the name of a file or a directory you input in an
abbreviated way using a type of "shell shorthand,"

= redirect the flow of input and output of the programs you run,
- execute multiple programs, and

» tailor your computing environment to meet your individual
needs and preferences.

In addition to being the command language interpreter, the shell is
also a programming language. If you would like an overview of shell
programming capabilities, see the section entitled Programming in the
System at the end of this chapter. Or refer to Chapter 7, Shell Tutorial,
for detailed information on how to use the shell as a command
language interpreter and as a programming language. A separate
document, UNIX System Shell Commands and Programming, should be
consulted for complete, unabridged information on shell
programming.

Using Shell Shorthand

Many UNIX system commands require that you name a file or a
directory as an argument to it on a command line, such as mkdir
directory name(s)<CR> or rm filename(s)<CR>. FEasy enough!
But suppose you have 12 files to remove corresponding to monthly
reports for 1983 named reptl, rept2, rept3, reptd4, and so on? Or
suppose you need to move 24 files corresponding to file names sect1,
sect2, ... sect24 to a different directory?

UNIX SYSTEM CAPABILITIES

Typing the file name for each monthly report after the rm command
or the file name for each section after the mv command is still easy,
but all the repetition gets tedious after inputting four or five names.

In instances like these, you should consider using shorthand notation
when specifying file or directory names. If the file or directory
names have some part in common, you can use a type of shorthand to
tell the shell that you are referring to all of them on the basis of the
similarity without specifying each one individually. Or, if a file has a
unique character or sequence of characters within a group of similarly
named files, you can use this shorthand notation to locate the file on
the basis of the difference.

The UNIX system recognizes several characters as having special
meanings when they are used in place of a directory name or when
they appear as part of a file or directory name on a command line.
These characters allow you to specify the names of files and
directories in a rapid, abbreviated way. Some of the characters are
referred to as metacharacters because of their special meanings to the
shell.

The special characters are . .. 2 * [] — \ and their meanings are
summarized in Table 4-2. When you specify file or directory names,
you can substitute various characters within them with the
appropriate shorthand abbreviation. Any part of the name that is not
a special character is taken at its literal value.

For example, for the possibilities described at the beginning of this
section, typing rm rept* <CR> would remove all the files in the
current directory starting with the characters rept followed by any
other characters corresponding to monthly reports for 1983, and
typing mv sect* ../chapter3<CR> would move all the files from the
current directory beginning with the letters sect and followed by any
other characters to another directory named chapter3 belonging to its
parent directory.

Details on how to use the special characters appear in other chapters
of this guide as indicated in Table 4-2. Refer to that chapter for the
information you need.

WORKING IN THE SHELL

TABLE 4-2

Shorthand Notation for File and Directory Names

Special Detailed
Character Meaning Reference
Current directory Chapter 3
Parent directory Chapter 3
? Match any single character Chapter 7
* Match any number of characters Chapter 7
[] Designate a sequence of characters to
be matched, such as [abc] or [628] Chapter 7
- Specify a character range within
[], such as A-Z Chapter 7
\ Remove meaning of special characters Chapters 2, 7

Redirecting the Flow of Input and Quiput

Up to this point in the UNIX System User Guide, any request to ask the
shell to execute a command was done by inputting the command and
the necessary argument(s) on the terminal keyboard. In turn, the
output, if any, was displayed on the terminal monitor. This pattern
illustrates the idea of standard input and standard output.

In general, the place from which a program expects to receive its
input is called the standard input. A UNIX system command called
mail, which you will learn more about in Chapter 8, provides a good
example of this and warrants mentioning here. For example, to use
mail, you would simply type mail jmrs<CR> and the mail
command takes everything you type on your keyboard after <CR>
until you type <"d> as input. After you type <"d>, mail sends
your input to the person with the login name jmrs. The place to
which a program writes its results, in this case the login name jmrs, is
referred to as the standard output.

In the UNIX system, most commands expect to receive their input
from the keyboard and then display output on the terminal monitor.

4-9

UNIX SYSTEM CAPABILITIES

By default, then, the standard input is the keyboard and the standard
output is the terminal monitor (Figure 4-1).

STAMDARD OUTPYT

program

st
WNpapp wpuT

Figure 4-1. Standard inmput/output flow. A program’s standard
input and standard output are usually assigned to your terminal.

You can, if you wish, use a feature called redirection to change these
defaults. Put simply, redirection is a UNIX system feature that allows
you to request the shell to reassign standard input and/or standard
output to other files or devices.

With the redirection feature, you can request the shell to do the
following:

- reassign to a file any output that a program would ordinarily
send to your terminal,

~ have a program take its input from a file rather than from your
terminal keyboard, or

- use a program as the source of data for another program.

You request the shell to redirect input and output using a set of
operators, which are > (greater than sign), >> (two greater than
signs), < (less than sign), and |(a pipe). Now let’s take a look at what
each of these operators can do for you.

4-10

WORKING IN THE SHELL

Redirecting the Standard OQutput (>)

The > operator allows you to redirect the output of a command (or
program) into a file (Figure 4-2).

program

Figure 4-2. Standard output can be redirected
from your terminal to a file.

To use the > operator, follow the command line format:
command > newfile<CR>

in which you can choose to surround the > operator with spaces as
indicated in the command line or leave the spaces out
(command > newfile <CR>); either method is correct.

For example, if you have two files, named groupl and group2? each
containing a list of names with telephone extension numbers that you
would like to sort alphabetically and then interfile into a separate file
called members, you would type:

sort groupl group2 > members <CR>

When you do, the UNIX system first alphabetically sorts and then
interfiles the contents of the files groupl and group2 and redirects the

4-11

UNIX SYSTEM CAPABILITIES

output into the file called members rather than displaying it on your
terminal. If you wish to read the contents of the members file, you
could use the cat or pg command.

Therefore, if the contents of the file group? is:

Smith, Allyn 101
Jones, Barbara 203
Cook, Karen 521
Moore, Peter 180
Wolf, Robert 125

and the contents of the file group? is:

Frank, M. Jay 118
Nelson, James 210
West, Donna 333
Hill, Charles 256

Morgan, Kristine 175

then the file members would appear as follows on your terminal when
displayed with the cat command.

-~

$ sort phasel phase2 > members<CR>
$ cat members<<CR>
Cook, Karen 521
Frank, M. Jay 118
Hill, Charles 256
Jones, Barbara 203
Moore, Peter 180
Morgan, Kristine 175
Nelson, James 210
Smith, Allyn 101
West, Donna 333
Wolf, Robert 125
$

Keep in mind that if the file to which you are redirecting the
standard output already exists, its contents will be replaced with the
output of the redirection command.

4-12

WORKING IN THE SHELL

Redirecting and Appending the Standard Output (>>)

Occasionally, you might like to add information to the end of an
existing file. You can use the >> operator to do so. Simply input
the following command line:

command > > file<CR>

For example, if the file members that was created in the previous
section was subject to additions and deletions, it might be a good idea
to date the list so you know at a glance what version of the list you
are using. You could do so by typing

date > > members<CR>

on the command line and the date and time would be printed at the
end of the file members. Or instead of adding the date to the end of
the file members, you could have appended another file containing
even more names.

Redirecting the Standard Input (<)

Standard input can be redirected as well as standard output with the
< operator. The general command line format for input redirection
is:

command < file<CR>

in which the < operator informs the command (or program) to take
input from the file you specify rather than from the terminal
keyboard (Figure 4-3).

4-13

UNIX SYSTEM CAPABILITIES

program

Figure 4-3. You can ask the shell to take a program'’s
input from a file rather than from your terminal.

For example, if you would like to send a copy of the file members to
co-workers who work on your UNIX system and who have the login
names mary2 and jmrs, typing

mail mary?2 jmrs < members <CR>

will accomplish the task. The mail command, however, does not
know whether it received its input from the file members (which it
did) or from your keyboard. Rather, input/output redirection is a
service provided by the UNIX system shell and is available to every
program. (You will learn more about the mail command in
Chapter 8.)

Connecting Commands with the Pipe (/[)

The pipe operator is a powerful, yet flexible, mechanism for doing
computing tasks quickly and without the need to develop special

4-14

WORKING IN THE SHELL

purpose tools. You can use it to redirect the standard output of one
program to be the standard input of another (Figure 4-4). Generally,
the format for using the pipe is:

command | command <CR>

STANDARD STANDARD

Figure 4-4. You can use the output from one
program to be the input for another.

A popular example of this is taking the output of the who command
(which you were introduced to in Chapter 2) and using it as input to
the wec command (which counts lines, words, and/or characters) as
follows:

who |we -1<CR>

This example shows that the standard output of the who command
was passed to the we -1 command (-] is the option that counts the
number of lines output by the who command, each corresponding to
a user who is logged into your UNIX system.)

4-15

UNIX SYSTEM CAPABILITIES

Summary

Table 4-3 summarizes which operator performs which redirection task
and what general format should be followed in using it. Refer to the
section on redirection in Chapter 7 for details on how to use them.

TABLE 4-3
Options for Redirecting Input and/or Outputy

Action Operator General Format

Redirecting output to a file > command > filename

Redirecting and appending
output to a file >> command > > filename

Redirecting input from a file < command < filename

Redirecting output of first
command to be input for
second | command | command

* See Chapter 7 for complete details on how to use these options.

} Blank spaces immediately before and after redirection operators are optional.

Running Multiple Programs

There are two methods for running multiple programs: you can
specify more than one command to execute in sequence from a single
command line or you can run commands simultaneously.

Executing Commands in Sequence

Up to this point, the command lines to which you have been
introduced and examples for using them have dealt with asking the
shell to run a single request or program. For example, each of the
command lines cat filename<CR>, date<CR>, and Is -1
directoryname <CR> requests the shell to perform one task. You
can, however, ask the shell to execute more than one request per
command line. Sequential execution allows you to enter as many
commands as you wish on one command line and have them execute
in the order in which you input them.

4-16

WORKING IN THE SHELL

To do so, you should first be familiar with the general rules for
command line syntax given in Chapter 3. Briefly, command line
syntax orders elements in the command line so that the command
name, any options you wish to specify, and the data on which the
command is to operate (usually the name of a file or directory) follow
one another.

To execute more than one command on a line, simply separate the
request sequences with semicolons (;) as follows:

command option(s) argument(s); command eption(s) argument(s); ...<CR>
For example, to determine where you are in the file system and then

list the contents of the directory in which you are working, you can
type pwd; Is<CR> and the terminal monitor might read:

-~

$pwd; Is<CR>
{userl/starship/bin
dir

list

tools

$

As you can see, the output of the multiple commands is ordered the
same way the input is: first, the current working directory is given
(in response to pwd) and, then, the names of the files and/or
directories it holds follow (in response to ls).

You could just as easily type wheo am i; date; who<CR> or
mkdir directoryabc; cd directeryabe; pwd <CR> or any
combination of commands that you wish to use.

Executing Commands Simultaneously

In addition to running programs sequentially, you can choose to run
them simultaneously. To do so, you need to know the difference
between foreground and background commands. When a program
runs in the background, the computer is executing that program
concurrently with the commands that you enter or with the program

4-17

UNIX SYSTEM CAPABILITIES

that you run in the foreground. However, the computer considers
your foreground work more important, in a sense, than your
background program. This difference has no perceivable effect on the
execution of most programs, but running a job in the background is a
useful technique when you wish to run a lengthy or time-consuming
job without tying up your terminal.

All the command lines used in this guide until now have been
examples of foreground commands. This means that they were
initiated and run to completion before other commands could be
executed and before the shell would return the $ prompt for you to
continue. However, you also have the option of running a command
in the background so you can continue to work in the foreground.

You can run a command in the background by placing an ampersand
(&) at the end of the command line as follows:

command option(s) argument(s) &<<CR>

When the shell reads the &, it starts running the program, prints an
identification number, and displays the $ prompt so you can use the
terminal immediately for other work.

To save the output from the job you are running in the background,
you must redirect the results of the execution into another file so you
can look at or use the output when you are ready. For example, if
you input the command cat filel file2 > file3 & <CR>, the shell
would first give you an identification number, and then the prompt.
It will also save the results of cat filel file2 in a file named file3.
When you are ready to peruse file3, simply use cat or pg. If you do
not redirect the output, then no output is saved.

When a program is running in the background, it ignores interrupt
and break signals, but if you log off, the shell terminates the
background program along with the computing session. If you
would like to stop a background command while you are still logged
into the UNIX system, type kill id<CR>, where id is the
identification number of the command. On the other hand, to have a
program continue to run after you log off, you can use the mohup
command (which stands for "no hang up") in the following way

nohup command & <CR>

4-18

WORKING IN THE SHELL

When you do, the command will continue to run until completion
and its output is saved in a file called nohup.out (which stands for
nohup output).

Customizing Your Computing Environment

The information in this section deals with another dimension of
control provided to you by the shell called your environment. When
you log into the UNIX system, the shell automatically sets up a
computing environment for you. You can choose to use it as
supplied by the system or you can tailor it to meet your needs.

By default, the environment set up by the shell includes the
variables:

HOME = your login directory,

PATH = route the shell takes to search for executable files
or commands (typically PATH=:/bin:/usr/bin), and

LOGNAME = your login name.

If you find the default environment satisfactory, simply leave it as it
is and go on with your work. However, if you would like to modify
it, you must have a file in your login directory named .profile. If you
do not, you can create one with a text editor like ed or vi.

To determine if you have a .profile, move to your login directory and
type cat .profile<CR> and its contents should appear on the
terminal monitor. Typically, the .profile tests for mail and sets data
parameters, system variables, and terminal settings.

Possible modifications to your login environment might include
changing your login prompt, setting tab stops, and changing erase
and kill characters. If you would like to customize your .profile, see
the section entitled Modifying Your Login Environment, in Chapter 7.

4-19

UNIX SYSTEM CAPABILITIES

COMMUNICATING ELECTRONICALLY

Before the days of office automation, you would probably have
thought of relaying a message or information to someone either
personally or by way of a letter, note, or telephone conversation.
Now as a UNIX system user, you can choose to communicate
electronically with other UNIX system users by way of the computer.

You can send messages or transmit information stored in files to other
users who work on your system or on another UNIX system. To do
so, your UNIX system must be able to communicate with the UNIX
system to which you wish to send information. In addition, the
command you use to send information depends on what you are
sending.

This guide introduces you to these communication programs:

mail -- This command is typically used for sending messages
to others and reading the messages sent to you. You
can use mail to send messages or files to other UNIX
system users using their login names as addresses.
And, at your convenience, you can use the mail
command to read messages sent to you by other users.
With mail, the recipient can choose when to read it.

uuto/uupick -- These commands are used to send and retrieve files.
You use the umuto command to send a file(s) to a
public directory; when its available to the recipient,
the person is sent mail telling him/her that the file(s)
has arrived. The recipient then can use the uupick
command to copy the file(s) from the public directory
to the directory of choice.

mailx -- This command is a sophisticated, more powerful
spin-off of mail. It offers a number of options for
managing the electronic mail you send and receive.

Chapter 8 teaches you how to use the mail, nute, and wuupick
commands. It also introduces you to the mailx command so you can
begin to use it.

4-20

PROGRAMMING IN THE SYSTEM

PROGRAMMING IN THE SYSTEM

The UNIX system provides an efficient, effective, and convenient
environment for programming and software development. This
section briefly describes the environment and your programming
options when working in it.

If you are not a programmer, your immediate reaction might be to
skip this section. But you need not be a programmer or software
developer to enjoy some of the capabilities that fall under the realm
of programming.

For example, you can use the shell as a command level programming
language as well as the command line interpreter. Shell
programming capabilities are useful and usable techniques that allow
you to take simple, existing programs and make them more powerful.
So why not read on.

On the other hand, if you're interested in sophisticated programming
and software development capabilities, this section can serve as a
springboard to using them.

What you can expect to find in the next few pages is an overview of
shell and C language programming and a mention of other languages
that can be used on the UNIX system. In addition, an overview of
some UNIX system tools for software development is included.

Programming in the Shell

Most interactive users of the UNIX system think of the shell solely as
the command language interpreter. The shell, however, is also a
command level programming language. What this means is that you
can let the shell continue to act as your liaison with the computer or
you can program the shell to repeat sequences of instructions and to
test certain considerations for you automatically. When you program
the shell to perform a task, you use the shell to read and to execute
commands that you place in an executable file. These files are
sometimes called shell scripts or shell procedures.

When you use the shell in this manner, it provides you with features,
like variables, control structures, subroutines, and parameter passing

4-21

UNIX SYSTEM CAPABILITIES

that are very similar to those offered by programming languages.
These features provide you with the ability to create your own tools
by linking together system commands.

For example, you can write a simple shell procedure from existing
UNIX system programs that tells you the date and time along with
the number of users working on your UNIX system. One way to do
so is illustrated in the following screen:

/$ cat > umsers<CR>
date; who | we -I<CR>
<"d>

$ chmod utx umsers<<CR>
$

A file called users is created using the > redirection operator. In the
example, cat is taking as input everything you type after <CR> on
the command line and placing it in a file named users. Then the file
is made executable with the chmed command. If you type the
command users<CR>, your terminal monitor would look something
like the next screen.

/$ users < CR>

Tues May 22 10:29:09 CDT 1984
7

$

The output tells you that seven users were logged into the system
when you typed the command at approximately 10:30 A.M. on
Tuesday, May 22.

4-22

PROGRAMMING IN THE SYSTEM

For additional information on shell procedures and for more
sophisticated shell programming techniques, see Chapter 7, Shell
Tutorial, for step-by-step instructions.

Programming in the C Language

C is a general purpose programming language. It is a relatively
"low level® language, which means that C deals with the same sort of
objects that most computers do, namely characters, numbers, and
addresses. These may be combined and moved about with the usual
arithmetic and logic operators.

C is closely associated with the UNIX system because it was
developed on the UNIX system and because UNIX system software is
largely written in C.

Although the C programming language is implemented on many
computers, it is independent of any particular machine architecture.
With a little care, it is easy to write portable programs, that is,
programs that can be run without change on a variety of computers if
the machine supports a C compiler.

The C programming language comprises the following main
elements:

= Types, operators, and expressions--Constants and variables are the
basic data objects manipulated in a program. Constants are data
objects that do not change during the execution of a program,
while variables are assigned new values throughout execution.
Declarations list variables, state type, and perhaps initial values.
Operators specify what is to be done on them. Expressions
combine variables and constants to produce new values.

?

Control flow--Control flow statements of a language specify the
order in which computations are done. In C, these include if-
else, else-if, and switch statements, and while, for, and do-while
loops. In addition, break, continue, and goto statements can be
used. Labels can be used as well.

4-23

UNIX SYSTEM CAPABILITIES

e Functions and program structure-—-C programs generally consist of
numerous small functions rather than a few big ones. These
functions break large computing tasks into smaller ones and
enable you to build on what others have done.

3

Pointers and arrays--A pointer is a variable that contains the
address of another variable. Pointers are frequently used when
programming in C because oftentimes they provide the only way
to express a computation and partly because their use typically
leads to more compact and efficient code than can be obtained in
other ways.

o Structures--A structure is a collection of one or more variables,
possibly of different types, that are grouped together under a
single name for convenient handling. Structures help to
organize complicated data because they permit a group of related
variables to be treated as a unit instead of separate entities.

« Input and output--A standard I/O library containing a set of
functions designed to provide a standard input and output
system is available for C programs. This library is a UNIX
system feature available for programming in C.

These elements are covered in detail in The C Programming Language
by B. W. Kernighan and D. M. Ritchie (Prentice-Hall, 1978).
Additional information 1is also available in the UNIX System
Programming Guide.

Other Programming Languages

In addition to C, other programming languages are available for use
on the UNIX system, such as FORTRAN-77, BASIC, Pascal, COBOL,
APL, LISP, and SNOBOL.

You can obtain details on FORTRAN and its variations in the UNIX
System Programming Guide. Or contact your AT&T Technologies
Account Representative for document availability and ordering
information on the others.

4-24

PROGRAMMING IN THE SYSTEM

Tools to Aid Software Development

This section highlights some sophisticated software development
tools available on the UNIX system. The tools are designed to make
development of software easier and to provide you with a systematic
approach to programming.

There are numerous software development aids provided by the
UNIX operating system. This section introduces you to five of them
to give you an idea of what you can expect development utilities to
do. They are:

SCCS -- Source Code Control System,
RJE -- Remote job entry,
make -- Maintaining programs,
lex -~ Generating programs for simple lexical tasks, and

yacc - Generating parser programs.

Refer to the UNIX System Support Tools Guide and the UNIX System
Programming Guide for more information.

Source Code Control System (5CCS)

The Source Code Control System (SCCS) is a collection of UNIX
system commands that helps you to control and report changes to
source code files or text files. SCCS allows you to access different
versions of the same file while maintaining only one file. The way
this works is that SCCS stores the original file on a disk. Whenever
modifications are made to the file SCCS stores only those changes as a
set in something called a delta. Each delta or set of changes is
numbered to reflect the different versions of a file. You can then

choose to retrieve either the original file or a version of the original
file.

4-25

UNIX SYSTEM CAPABILITIES

By allowing SCCS to store and control all iterations of a file, space
allocations for storage are minimized and administration of different
versions of the same program or document is efficient and simplified.
Updates to files can be made quickly and the original version of a
program or document is retained if you should need to recall it later.

For additional information, see the UNIX System Support Tools Guide.
Most of the commands needed to use SCCS are documented in the
UNIX System User Reference Manual.

Remoite Job Entry (RJE)

Remote job entry (RJE) is a software package designed to facilitate
communication between a UNIX operating system and an IBM
System /360 or an IBM System/370 computer. The RJE software
allows the UNIX operating system to communicate with the IBM Job
Entry Subsystem by mimicking an IBM System/360 remote
multileaving work station. A set of background processes support
RJE, and the UNIX system uses these processes to submit jobs for
remote execution on the networked IBM system.

When RJE software runs, it does so in the background. It transmits
jobs (consisting of job control statements [JCL] and input data) that
you queue with the semd command and status reports you request
with the rjestat command. In turn, the RJE software subsystem
receives print and punch data sets and message output from the IBM
system.

For more information on RJE software, see the UNIX System Support
Tools Guide. Commands to be used with RJE are covered in the UNIX
System LUser Reference Manual and the UNIX System Administrator
Reference Manual.

Maintaining Programs (make)

The make command is a tool for maintaining, supporting, and
regenerating large programs or documents on the basis of smaller
ones. Since it is easier to handle and modify small programs, it is
recommended that if you wish to develop a large program, you start
by creating a series of smaller ones that work together to produce the
large one.

4-26

PROGRAMMING IN THE SYSTEM

The make command provides you with a method to store all the
information you need to assemble small programs or modules into a
large, more sophisticated one. A file called a makefile holds the file
names of the small programs, the steps necessary to generate the
large program, and specifies the dependencies among the files.

When make executes the makefile, the date and time you last
modified any of the small programs are checked and the operations
needed to update them are performed in sequence. Then, make goes
on to create the overall large program.

For details on the operation of make, see the UNIX System Support
Tools Guide. Or, for a quick reference, see the entry for make in the
UNIX System User Reference Manual.

Generating Programs for Lexical Tasks (lex)

The lex utility generates programs to be used in simple lexical
analysis of text. Lexical analysis is done by evaluating a stream of
characters and constructing the forms that are acceptable to the
language. Proper forms are defined in the lex program and usable
forms can be defined by lex defaults or by you. Lex produces a
subroutine as output that must be compiled and combined with other
programs to use the lexical analyzer.

The processing done by the lex command can be the first step in
creating a compiler-type program. In addition, it can be useful as a
preprocessing tool for many different software generation functions.

For additional information on the lex command, see the UNIX System
Support Tools Guide. A. brief description of how lex operates and an
explanation of its options can be found in the UNIX System User
Reference Manual.

Generaling Parser Programs (yacc)

The yacc program, short for yet another compiler compiler, is
primarily used in the generation of software compilers. Essentially,
yacc is a utility for creating parser subroutines. The way this works
is that first yacc uses specified syntax and produces source code for a
parser subroutine. Then, the parser subroutine is compiled, and
finally used with a program that calls it to parse input. In this way,

4-27

UNIX SYSTEM CAPABILITIES

structure can be imposed on the input to a program and the desired
language can be created from defined rules.

See the UNIX System Support Tools Guide for details on the yacc
command. Or refer to the UNIX System User Reference Manual for
some general guidelines on how to use it.

4-28

UNIX SYSTEM TUTORIALS

Chapter 5.
Chapter 6.
Chapter 7.

Chapter 8.

Contents

Line Editor Tutorial

Screen Editor Tutorial

Shell Tutorial

Communication Tutorial

Chapter 5

LINE EDITOR TUTORIAL (ed)

PAGE

INTRODUCING THE LINE EDITOR ..ocenamnnrenanmnnnnsnnnensnsanssnnansnnsnnassssssnsasssansnnnssnnsnnnn 5-1
HOW TO BEAD THIS TUTOREIAL .oeerecemrmmrmmrennersnennnnnnnnnnsnansssssnssssnsmnnmnsnnnnnssersnasaane 5-2
GETTIMG STARTED ..ucvnniirannnnsmnnnnmnnsnnnrsnnssnssnnnsnnnnnnanssssnsnsnssnansnsnnnssnnnssssnsssnssnnssnnnn 5-3
HOW B0 ACCESS @0 cuinrnnnnnnnnsesonsnmannssnmnmnnrsassssanannnnnnnnasnanssmsamsasissssannsnsnannsnmnansass 5-4
HOW £0 Cr@ARE T MR anrrnnnnrmnnnnrcnmacemmnsmnsnrmncsssrsunsnnsnnnnnnnnnnnnmnssnessrasasssasnasnnnnnnmsass 5-5
How to Display a Line Of TeXE .. rrecmnncmmnnmmnnmmmnsmnrrssnnsssannnsmnnannnennennansnsannannnsn 5-6
How to Delete a Line Of TeXE . cicoomcmnmnmnasnnnnrannnnnnnrsanannanaannanasnanannssanansaranss 5-8
How to Move Up or Down a Line in the Fileovmmeincermcnmmninsmnnnnnannnans e ees 5-9
How to Save the Buffer Contents in @ Fileccvcrvcmmmiicmnmannnemnmnannnnnnnmnssnsnannas 5-10
How to Quit the Editor 5-11
EXERCISE T unucnnsncennmnnmnasnnnnnmasmnamnsnnmnemmnsssstnsnnnsnnnssnsnsssssssmnssansansssnnssannnssnnsnsnassnsenass 5-13
GENERAL FORMAT OF ed COMMANDSorrermrimmrnninnnnnnnsmsssnnnnsanannnssansnnnansancn 5-13
LINE ADDRESSING....oemcnmmmnnnmnnsnnsansmsmnsmmmmmmmamasassnssssnnsnnnnsnnnmnnmsasasansanssnsnmsnnsnssnsasen 5-14
NUMDBEF LinNe AQOAT@SS@S c.verernrnnrnrcnmnmnnnnransnransrnssnnsnssmnsnannnnsnsnnsasnasasnssannssnnnsanan 5-15
Special SYMbOIS AJAFE@SSES wurnrrmrrerrrnnrnmnnsmnnnmnnsssssssnsanssnsnssnnnsssnsesnassnnsansmannnn 5-16
Current Line Address Character......cccicmummmramnmnnnnnnrsannannansannasnransnnanasnnnsren 5-16

Last Line Address CharaCher ..o rmrreccnernsenamannnsnmnnnnnnnnsmsansssssssnmnnnnnnnnnnnn 5-17
Address for the First Line Through the Last Linecccccamemmmmcrancrncrmrannnnnn 5-18
Address for the Current Line Through the Last Linecconemenmmnnnmmnnmnnnesess 5-18
Relative Addressing, Adding or Subtracting Lines from the Current Line 5-19
Character String AdOreSSeS ..ouuermenrnmnmnnrnnnnnnrannanannnsnnsnannana . 521
Specifying a Range of Lines- 5-24
Specifying a Global Search - 5-26

EXERCISE 2 ..renncennmnnnnansmenassannnsssnnsssnsssnnmsnsnsnssssssnssssssssssnssnssnnssmassnss s asssasansnnennnnn 5-29

DISPLAY LINES IN A FILE oo rereimnnmncccomnmnnmnnnsnnnnmsnnrc s s nannnnnnmmnannrasnmnnnnnmnnnns 5-30
DISplay Lines Of TeXE o nncnmnrnrnrnsnnanennsanasnsnansrnssmnsenasnmasnsnnannnnsnsnasnnasnnnssnn 5-30
Display Lines of Text Preceded by the Line Address Number......ccovvvvvecanens 5-31

CREBTING TEXT .ociiroiacimerasnnesainassnnnnssnnnsnnassmonsmnmnnmnnnmnsnrmnrmesasnssssnsnnsnnsnnssnnennnnn 5-33
APDPENAING TOXE . enrnirnarnnnnnernnnanmsacnnnmreanmmmannnnsnsntnssssmrmsne s snnasnsannssmasasannannsnn 5-33
LT = 5 0T T = PPN 5-36
CRANGING TEXE . .enainnnnmnrmnnnnsmmnasannanacmssarsnnssnsammnnmnsnsnnnsnmrnrastse s amasasanannmnmnnsnnnsann 5-37

EXERCISE B .oiiririerrecmmammnmmnnnsnnsncmasneannrmnonnnsnssmssmsnonanansms s mns s man s n s nmrmonn s nann 5-39

DELETING TEXT . oooeicnmmmrmmnsmnnmsnaemnsasnmmmmansnsnnssmnsnmsanensmsnmsmmsnnssnrssmnnanassnsmnnsnnmnssnmennn 5-41
Deleting Lines Of TeXR . icanrrnramcnennrnnnnrnsnrascannasnnannnsnrnr e nnmasannnmnsnsnsnssonsann 5-41
Undo the Last COMMANToceimroreccemrmmnnarnsecereaansasannmnsrsrcosnesmnnmnnnnnnenmsnnnnen 5-43
Deleting Commands in the Text Input Modec..iiirmimrinaiamarrnnnnrnnsaensessan 5-44

Deleting the CUTFent LIN@ ... ceiieimnnnnnnrneanasnannnnannsensasmessassnsnsannsnncnnann 5-44
Deleting the Last Characters TYP@O ... iieemvearenmanmnnrrrenmansansnnsnsnnnsnsannes 5-45

SUBSTITUTING TEX T e streutrcainnnannnsnnsrmnronsscenmnsnnsssnnnrsnnsmnssssnnssnsnsnnssnennsnnmnnnmsnnnsesnneen 5-47
Substifuting on the CUITent LIMe ... irareiranrcnrrnsan e nsnn s rsnsnnsnnsnnssnssesssnrune 5-49
SubsHItUTING ON ONE LIME .. i iccccecrcccammrmmnmnaraermcreanenasmananmnnsesnnnnssnassnnsnnsnnsnnnsnnn 5-50
Substituting 0N 2 RANGAE Of LINES .cneerenrenennnnnnreceessnnsnsnnnnsnssnessssnsansnsnsnnnsennes 5-50

GlObAl SUDSHEUION 1anrrnnnceccnnnrennrmracsnninnnrnnnntnonaennnennnennnsnnnmssnanssansnnnsnmnnres 5-52

EXERCISE 4.....corieeimiimneenrmnnnnnnssnmnmsanmrmmnsssnnnnnnsssnnssnnnssasnnnassnnnnessanmanannnennnnnsnnnsnnnnn 5-54

SPECIAL CHABACTERSittiminsnrrnmmennecnnemnnnsnnnnnssnensnmenessnnsannsansssnnnensanannmnnnmnnsensnnn 5-56

EXERCISE 5....ccooiiieiranmnnnimnennnnnesnsssnssansssnnssasnnnnnnnmnmnmssssnnsnnnssnnnsnenssansssnmannmnnnsnnsnnenn 5-67

OVING TEXT .o coniimammmmmmmrnnnnnrasnnemnanaseansnnsmnsnssernmnsmasnannannnrsnnsenssssanesnssnsnnnnnmsnnnnns 5-69
POVE LINES OF ToXA .o inrrnrmcrecmrccencenarmnnnneaanencnansanamnrnnnrnnnrnnn e nnnnnannnnnssannsnnnsnn 5-69
CODY LINES OFf T@XE . einiaiereeinmmnannnnnnnnnsnrsammncennnnnnsnsnsnnsssnnnsssnsnnssnsnnnnmmnmrsasensnnn 5-72
JOINING CONIGUOUS LIM@S ceiniriininanmnnnasnnnnamommmansnnsnssnssnsansssassnsnnannsnsssesansnnnanen 5-74
Write Lines Of TeXt 10 @ Fil@a i crrniminanmnenncsnennnnsnssnnsrsssmnnnemennanennnrnnnens 5-75
Read in the Contents Of @ Fil@iiurecremammnmnnennsnnsnnsnssrassnssnsassssmnnsmnsnnannannn 5-77

OTHER USEFUL COMMANDS AND INFORMATION L irennerncenannennnnerennan 5-79
Help COMMANAS ...ccennmmnrmncnmnansnnmomessssnnnsssnasnennssnssnnnsssssrnsansnnsnansannmnnnsmsnensnnnnns 5-79
Display Nonprinting CharactersScwreccremmnmmnmmsmnnnmncrmnesnncnnsssnnnnnsnsessnmassnsnnnmnns 5-82
The Current File Mami@ ... ciirnrcennmrmnrnnnnnnnnnssnenonnansssnmmnnansnsnsrennssnansmnnsnsneans 5-84
Escape 10 the Shell crmrnnrnnnnrconseas e amnnnnnn s ssnasaanannannmnnnsnonnmansnanan 5-86
Recover From a System INE@ITUPEY ..o rcenerrnnnenannannanerenasnmnanncasnnnnssssesasnnneassenn 5-87
L0 Y T o] 1 T ¥ T N 5-87

EXERCISE 7 ..ooeeenennrnnnnnnsansnnnnnsnsnnnnnssmssesessnmsnnnnntennssnnsssnnnnnstnnnnassssnnesnnenassnnnnnnnsenen 5-88

ANSWERS TO EXERCISES ..oreiinnnnrarreemnmenmnnnasnnnnssnocmnsannnmnnass nnmnnssnsesnnnnnesnnnnsnennns 5-90
EXEICISE T rrnennranannnennnnnnnnsnenansannssnsnnnnansssnsnnssmsssnnnnnmssnsnmnmssesnannnmnnsassonsnnsnsnannnn 5-90
EX@FCISE 2 1rnunrmnnnnnnmnnnennannnnmsnnssnnsnnnssnnnsnesnssnssnnnnnnsssnsssansnssn snnnssnnnssnsnonssnnnnnnanas 5-91
EXOICISE 3 crrnrnnnnnnsmmennnnnassnnnnrmssssamnnnmnassssnnnsssnsssnnnnnssnnnnnnmns nnnnonsansnnnnssmnsnnsonsnnn 5-93
EXBICISE A .riiiinnnncnnnnnansanancesnsnsnsnnvasnsrmannoassassnnmnnsnnnnsssans annnanesnsnnnnsnssnsnnnnnnssn 5-96

Exercise 5

Exercise 6

Exercise 7

Chapter 5

LINE EDITOR TUTORIAL (ed)

INTRODUCING THE LINE EDITOR

This tutorial is an introduction to the line editor, ed. The advantages
of the line editor are speed and versatility. ed requires very little
computer time to perform editing tasks. The line editor commands
can be typed in by you at a terminal, or they can be used in a shell
program. (See Chapter 7, Shell Tutorial.)

When you enter ed, you are placed in a temporary buffer. The buffer
is like a piece of scratch paper for you to work on until you have
finished creating or correcting your text in this scratch pad buffer. If
you are creating a new file, you enter commands from your terminal
that tell ed how to create or modify your text in this scratch pad
buffer. If you are editing an existing file, a copy of that file is placed
in the buffer. Changes are made to the copy of the file. The changes
have no effect on the original file until you instruct ed, using the
"write command", to move the contents of the scratch pad buffer into
the file.

You can create text in a file line by line, just as you would on a
typewriter. However, ed is easier to use than a typewriter because it
gives you commands that allow you to change, delete, or add text on
several lines in the file, and then display those lines of text on your
terminal. You can also add text from another file.

After you have read through this tutorial and have done the
examples and exercises, you will have a good working knowledge of
ed. The following basics will be covered:

o A brief introduction to ed, accessing the line editor, creating
some text, displaying the lines of text, deleting lines, writing the

text to a UNIX system file, and quitting ed,

~ How to address those lines of the file that you want to work on,

5-1

LINE EDITOR TUTORIAL (ed)

~ How to display lines of text,

»~ How to create text,

» How to delete text,

-~ How to substitute new text for old text,

»~ How to use special characters as shortcuts for search and
substitute patterns,

-~ How to move text around in the file, and

~ Some other useful commands and information.

HOW TO READ THIS TUTORIAL

In this tutorial, commands printed in bold should be typed into the
system exactly as shown. The system responses to those commands
are shown in italic. Text that you type into a file is not shown in
bold. You should assume that each line you type in at your terminal
ends in a carriage return unless the text directs you to do something
else. The carriage return is denoted by <CR>. As you read the text,
you may want to glance back to this section for a quick recap of these
conventions.

Kbold command (Type in exactly as shown.)

italic respomnse (The system’s response to the command.)
roman (Text that is being typed into a file.)
<CR> (Carriage return.)

A display screen or partial screen, like the one above, will be used to
illustrate the commands. Because ed is versatile and can be used on
any type of terminal, you may not be working on a video display

5-2

GETTING STARTED

terminal. However, the lines you type in, and the system responses
are the same whether you are working with a video display terminal
or a paper printing terminal.

The ed commands are introduced by depicting the corresponding key
on your keyboard. The key will appear as shown below in the
example of the "a" key.

N\

Notice that the letter on the key appears as it does on your keyboard.
However, when you press the key, the letter will appear in lowercase
on your terminal. If you need an uppercase letter, the example will
include the SHIFT key.

The commands discussed in each section are reviewed at the end of
that section. A summary of the ed commands discussed in this
chapter is found in Appendix D, where they are listed in alphabetical
order, as well as by topic.

At the end of some sections, exercises are givem so you- can
experiment with the commands. The answers to all of the exercises
are at the end of this chapter.

GETTING STARTED

Let’s get started. The best way to learn ed is to log into the UNIX
system and try the examples as you read this tutorial, do the
exercises, and do not be afraid to experiment with the ed commands.
The more you experiment with ed commands, the sooner these
commands will become second nature to you, and you will have a
fast and versatile method of editing text.

LINE EDITOR TUTORIAL (ed)

In this section, you will learn the bare essentials on how to:
o Access ed,
- Append some text,
» Move up or down in the file to display a line of text,
» Delete a line of text,
» Write the buffer to a file, and

= Quit ed.

How to Access ed

To access the line editor, type in ed and then a file name. The
general format for the ed command line is:

ed filemame<CR>

Choose a file name that reflects what will be in the file. The system
will respond with a question mark if this is a new file.

$ ed new-file<CR>
? new-file

If you are going to edit an existing file, ed will respond with the
number of characters in the file.

$ ed old-file<CR>
235

In the above example, the existing file, old-file, has 235 characters.
5-4

GETTING STARTED

How to Create Text

If you have just accessed ed, you are in the command mode of the
line editor. ed is waiting for your commands. How do you tell ed to
create some text? Press the "a" key and then a carriage return.

A Append text.

If a is the only character on a line, it tells the editor that the next
characters typed in from the terminal are text for the file. You are
now in the text input mode of ed. After you have added all the text
that you want to the file, type in a period on the line by itself. This
takes you out of the text input mode and returns you to the command
mode of ed, so that you can give ed other commands.

The next example shows how to enter ed and begin creating text in
the new file, try-me. The text input mode is then ended with a

period.

f:ﬁ' ed try-me<CR>

7 try-me

Aa<CR>

This is the first line of text. <CR>
This is a second line, <CR>

and this is the third line.<CR>
LKCR>

Notice that ed does not give you a response to the period. It just
waits for you to enter a new command. If ed is not responding to
your commands, you may have forgotten to type in the period. Even
experienced users sometimes forget to end the text input mode with a
period. Type in a period at the beginning of the line. Now ed
should respond to your commands. If you have added some

5-5

LINE EDITOR TUTORIAL (ed)

unwanted characters or lines to your text, you can delete them once
you are back in the command mode.

How to Display a Line of Text

How can you display what is in the file? Type in p, for print, on a
line by itself.

P Display text.

Since you have not specified any line number, or line address, p will
display the current line, that is, the line that was last touched or
worked on by ed.

/59 ed try-me<CR>

? try-me

a<CR>

This is the first line of text.<CR>
This is a second line, <CR>

and this is the third line.<CR>
LCR>

p<CR>

and this is the third line.

5-6

GETTING STARTED

If you want to see all the lines of text in the file, type in 1,$p. The 1
and the $ are the line addresses for the first line and the last line of
the file. These will be discussed in detail in the section on Line
Addressing.

C,$p <CR>

This is the first line of text.
This is a second line,
and this is the third line.

Problem:

If you forgot to end the text input mode with the period, you would
have added a line of text that you did not want. Try to make this
mistake. Add another line of text to your fry-me file and then try the
p command without ending the text input mode. Now, end the text

input mode and press "p". What did you get? How do you get rid of
that line?

/p<CR>

and this is the third line.
a<CR>

This is the fourth line. <CR>
p<CR>

LKCR>

1,$p <CR>

This is the first linc of text.
This is a second line,

and this is the third line.

This is the fourth line.

P

5-7

LINE EDITOR TUTORIAL (ed)

How to Delete a Line of Text

If you are in the command mode of ed, press d to delete the current
line.

D Delete text.

To get rid of the line with the "p" on it, in the last example, delete
the line with the d command. The next example displays the current
line, deletes the current line, and then displays all the lines in the
file.

Kp<CF¢\>

p
d<CR>

1,$p <CR>

This is the first line of text.
This is a second line,

and this is the third line.
This is the fourth line.

After you press d, ed deletes the current line, but it does so quickly
and quietly. It is not evident to you that anything has happened
unless you press p and find that the current line has been deleted.

5-8

GETTING STARTED

How to Move Up or Down a Line in the File

To display the line below the current line, press <CR>.

RETURN Display the mext line
of text.

If there is no line below the current line, ed will respond with a 7
and the current line will remain the last line of file. Pressing <CR>
is a good way to move down through the buffer.

How do you display the line above the current line? Use the minus
key, — .

Display the line of text above the
current line.

N

The next screen demonstrates how to display a line of text, above or
below the current line in the file.

s

p<CR>

This is the fourth line.
—<CR>

and this is the third line.
—<CR>

This is a second line,
—<CR>

This is the first line of text.
<CR>

This is a second line,
<CR>

and this is the third line.

5-9

LINE EDITOR TUTORIAL (ed)

If you pressed the —<CR> or <CR>, you noticed that the line was
displayed without having to press the "p" key. You were addressing a
line. If you give a line address and do not follew it with a command,
ed assumes you want the p command, which is the default command
for a line address.

Experiment with these commands, create some text, delete a line, and
display your file.

How to Save the Buffer Contents in a File

If you have finished editing your text, how do you move it from the
buffer, your scratch pad, into a file? To save your text, write the
contents of the buffer into a file with the w command.

Write the contents of the buffer to
a file.

N\

ed will remember the file name you gave when you accessed ed, and
will write the contents of the buffer to a file with that name. If the
file did not already exist, ed will create it and then write the contents
of the buffer into it.

w<CR>
107

If the write command is successful, the character count is displayed.
In the last example, there are 107 characters of text. When you write
a file, you copy the contents of the buffer into the file. The text in
the buffer is not disturbed. You can add more text to it. It is a good
idea to write the buffer text into your file frequently. If an interrupt
occurs (such as an accidental loss of power to your terminal), you may
lose the material in the buffer, but you will not lose the copy written
to your file. You can also write to another file name that is different

5-10

GETTING STARTED

from the one you entered in the ed command line. The file name
will be a parameter to the w command. In the following example,
the new file name is stuff.

w stuff <CR>
107

When you return to the shell command mode, display the contents of
stuff and try-me. Are they the same file?

How to Quit the Editor

You have completed editing your file, and have written the editing
buffer to the file. To leave the editor and return to the shell
command mode, type in the quit command, q.

Quit the editing buffer.

w<CR>
107
q<CR>

The system responds with your shell prompt. At this point, the
editing buffer vanishes. Unless you have used the write command,

5-11

LINE EDITOR TUTORIAL (ed)

your text in the buffer has also vanished. Since this could be a
serious problem, ed warns you with a ? the first time you type in q
without having written any new changes to a file.

Kq<CR>

w<CR>

If you insist on typing in a second q, ed assumes you do not want to
write the changes to the buffer into your file, and returns you to the
shell command mode. Your file is left unchanged and the buffer
contents are wiped out.

You now know the basic commands to create and edit a file.

SUMMARY OF COMMANDS FOR GETTING STARTED

ed filename

a

Enter ed to edit the file called filename.
Append text after the current line.

End the text input mode, and return to the
command mode of ed.

Display text on your terminal.
Delete text.
Display the next line in the buffer.

Display the line above the current line in the
buffer.

Write the buffer to the file.

Quit ed and return to shell command mode.

512

GENERAL FORMAT OF ed COMMANDS

EXERCISE 1

The answers to all the exercises throughout this chapter are found at
the end of this chapter. However, if your method works, if it
performs the task even though it does not match the answer given, it
is a correct answer.

1-1.

Enter ed with the file named junk. Create a line of text "Hello
World", write to the file and quit ed.

Reenter ed with the file named junk. What was the system
response? Was it the same character count as the response to
the w command in Exercise 1-1.7

Display the contents of the file. Is that your file junk?

How do you get back to the shell command mode? Try q
without writing the file. Why do you think the editor allowed
you to quit without writing to the buffer?

Enter ed with the file junk. Add a line:
This is not Mr. Ed, there is no horsing around.

Since you did not specify a line address, where do you think the
line was added to the buffer? Display the contents of the buffer.
Try quitting the buffer without writing to the file. Try writing
the buffer to a different file stuff. Notice that ed does not warn
you that the file stuff already exists. You have erased the
contents of stuff and replaced it with new text.

GENERAL FORMAT OF ed COMMANDS

The commands in ed have a simple and regular format. Commands
are of the form:

[address1,address2jcommand[parameter] <CR>

5-13

LINE EDITOR TUTORIAL (ed)

The brackets around the addresses and parameter denote that these
are optional. The brackets are not part of the command line.

address1,address2?
The addresses give the position of lines in the buffer.
Addressl through addressZ gives you a range of lines
that will be affected by the command.

command
The command is one character and tells the editor
what task to perform.

parameter
The parameters to a command are those parts of the
text that will be modified, or a file name, or another
line address.

This general format will become clearer to you when you begin to
experiment with the commands in ed.

LINE ADDRESSING

Line addresses are very important to ed. To add text before or after a
line, to delete, move, or change a line, ed must know the line
address.

[address],address2jcommand <CR>

Address2 is given only if you are specifying a range of lines. If
addressl is not given, ed assumes that the line address is the current
line.

A line address is a character or group of characters that identify a line
of text. The most common ways to address a line in ed are:

o Line numbers, 1 being the first line of the file,

» Special symbols for the current line, last line, and a range of
lines,

5-14

LINE ADDRESSING

» Adding or subtracting a number of lines from the current line,
and

~ A character string or word on that line.

You can access one line, a range of lines, or make a global search for
all lines containing a specified character string. A character string is
a group of successive characters, such as a word.

Number Line Addresses

ed gives a number address to each line in the buffer. The first line of
the buffer is 1, the second line of the buffer is 2 and so on for each
line in the buffer. Each line can be accessed by ed with the line
address number. If you want to see how line numbers address a line,
enter ed with the file try-me and type in a number of a line.

-

$ ed try-me<CR>

107

1<CR>

This is the first line of text.
3<CR>

and this is the third line.

Remember that p is the default command for ed. Since you gave a
line address, ed assumes you wanted that line displayed on your
terminal.

Problem:

Later in this tutorial you will create lines in the middle of the text, or
delete lines, or move a line to a different position. This will change
the address number of a line. The number of a specific line is always
the current position of that line in the editing buffer. If you add five
lines of text between line 5 and line 6, once the lines have been
added, line 6 becomes line 11. If you delete line 5, line 6 becomes
line 5.

5-15

LINE EDITOR TUTORIAL (ed)
Special Symbols Addresses

Current Line Address Character

The address of the current line.

N

The current line is the line that was most recently acted upon by ed,
either displayed, created, or moved. If you have just accessed ed with
an existing file, the current line is the last line of the buffer. The
address for the current line is a period. If you want to display the
current line, type in:

If you access ed with your file try-me, you will find that the current
line is the last line. Try it.

$ ed try-me<CR>
107

LKCR>

This is the fourth line.

The "." is the address. Since no command is given, ed assumes the
default command p and displays the line addressed by " . ".

If you want to know the line number of the current line, you can
type in the command: =

ed will respond with the line number. In the last example the
current line is 4.

LINE ADDRESSING

LKCR>

This is the fourth line.
=<CR>

4

Last Line Address Character

The address of the last line.

The last line of the file can be addressed by $. It does not matter how
many lines are in the file, the last line can always be addressed by $.
If you access ed with the try-me file, you can see that when you first
enter ed the current line is the last line.

—

$ ed try-me<CR>
107

LCR>

This is the fourth line.
$<CR>

This is the fourth line.

Remember that the $ address within ed is not the same as the §
prompt of the shell. If this gets confusing and you want to change
your prompt, see Changing Your Environment in Chapter 7, Shell Tutorial.

LINE EDITOR TUTORIAL (ed)

Address for the First Line Through the Last Line

The , used as an address will refer to all lines of the file, the first
line through the last line.

p Address all lines of the file.

If you wanted to display all lines of the file, you could use , as a
shortcut address for 1,$.

K,p<CR>

This is the first line of text.
This is a second line,

and this is the third line.
This is the fourth line.

Address for the Current Lime Through the [Last Line

The ; addresses the current line through the last line of the file.

H Address the range of lines from the
current line through the last lime.

LINE ADDRESSING

The ; is the same as addressing .,$.

[<cr>

This is a second line,
p<CR>

This is a second line,
and this is the third line.
This is the fourth line.

Relative Addressing, Adding or Subtracting Lines from the Current
Line

If you are in a long file, you may want to address lines with respect
to the current line. You can do this by adding or subtracting the
number of lines from the current line, thus giving a relative line
address.

Add a number of lines to
the current line address.

Subtract a number of lines from
the current line address.

LINE EDITOR TUTORIAL (ed)

To see relative line addressing, add several more lines to your file
try-me. Each line should contain the number of the line.

KSS ed try-me<CR>
107

SR>

This 1s the fourth line.
a<CR>

five

SixX

seven

eight

nine

ten

LCR>

Now try adding and subtracting line numbers from the current line.

/4<CR>

This is the fourth line.
+3<CR >

seven

—5<CR>

This is a second line,

LINE ADDRESSING

What happens if you ask for a line address that is greater than the
last line, or you try to subtract a number greater than the current line
number? Experiment with a relative line addressing. See what
happens.

-~

5<CR>
five
—6<CR>
?
=<CR>
5

+7<CR>
?

Notice in the above example that the current line remains at line 5 of
the buffer. The current line only changes if you give ed a correct
address. The ? response indicates an error. The section on Other
Useful Commands and Information at the end of this chapter, will
discuss getting a help message which describes the error.

Character String Addresses

You can search forward or backward in the file for a line containing a
specified character string. The line address is the search delimiter
and the character string.

A delimiter gives the boundaries of the character string. Delimiters
tell ed where a character string starts and ends. The most common
delimiter is /. You may also use ?. If / is used at the beginning of
an address ed will search forward or down the buffer for the next
line containing the specified character string.

/ Search down or forward in the buffer and
address the first line with a specified
pattern of characters.

Type in: /pattern
5-21

LINE EDITOR TUTORIAL (ed)

ed will search the current line and then down the buffer for the first
line that contains the characters patterm. If the search reaches the last
line of the buffer, ed will then wrap around and start searching down
the buffer from line 1.

The rectangle below represents the editing buffer. The path of the
arrows shows the search initiated by / .

| |

| {

\ 1

1 . .

| First Line
|

1

|

i

[

f?\ Current line
i

1

|

1

|

|

: Last line
| |

L4

If 7 is used at the beginning of an address, ed will search backward
or up in the buffer for the specified character string.

" Search up or backward in the buffer and
address the first line containing a specified
\ pattern of characters.

Type in: ?pattern

ed searches backward from the current line for the first line
containing the characters pattern. If the search reaches the first line
of the file, it will wrap around and continue searching upward from
the Jast line of the file.

kA
»
n

LINE ADDRESSING

The next rectangle represents the editing buffer. The path of the
arrows shows the search initiated by 7 .

First line

Current line

Last line

T
|
PR |

Experiment with these two search address requests on the file try-me.
What happens if ed does not find the search pattern?

~

$ ed try-me<CR>

107

<CR>

ten

2first<CR>

This is the first line of text.
[fourth<CR>

This is the fourth line.

/junk <CR>
?

Once again, since no command was given, ed assumes it is the p
command and displays the line. In the above example when ed was
asked to search for the pattern jumnk, it could not find junk and
responded with a ? .

5-23

LINE EDITOR TUTORIAL (ed)

Try the following sequence of commands.

Type in: [line<CR>
[<CR>

What happened?

~

SR>

This is the first line of text.
[line<CR>

This 15 the second line,

| <CR>

and this is the third line.

| <CR>

This is the fourth line.

ed remembers the pattern of the last search and looks for that pattern
until it is given a new pattern.

Specifying a Range of Lines

There are two ways to address a range of lines. You can specify a
range of lines such as addressl through address2, or you can specify a
global search for all lines containing a specified pattern.

The simplest way to specify a range of lines is to use the line number
of the first line through the line number of last line of the range.
These numbers are separated by a comma and placed before the
command. If you want to display lines four through ten of the
editing buffer, you would give addressl as 4 and address2 as 10.

Type in: 410p<CR>

5-24

LINE ADDRESSING

If you are editing the file try-me, how would you display lines one
through five?

K

1,5p <CR>

This is the first line of text.
This is a second line,

and this is the third line.
This is the fourth line.

five

Did you try typing in 1,5 without the p? What happened? If you do
not add the p command, ed only prints out address2, the last line of
the range of addresses.

You can also use relative line addressing for a range of lines. Be
careful, addressl must come before address?2 in the buffer. The
relative addresses are calculated from the current line.

L<CR>

This is the fourth line
—2,4+3p<CR>

This is a second line,
and this is the third line.
This is the fourth line.
ﬁve

six

seven

5-25

LINE EDITOR TUTORIAL (ed)

Specifying a Global Search

There are two commands that do not follow the general format of the
ed commands. They are the global search commands that specify the
addresses with a character string.

G The global search command searches the entire
file for lines that contaim a specified pattern
\ of characters.

v The global search command searches the entire
file for lines that do NOT contain a specified
\ pattern of characters.

The general format for these two commands gives the command, a
delimiter, the search pattern, a delimiter, and a command.

g/pattern/command <CR>

v [pattern/command <CR>

Try out these commands on try-me.

5-26

ﬁ

LINE ADDRESSING

g/line/p<CR>

This is the first line of text.
This is a second line,

and this is the third line.
This is the fourth line

v/line/p<CR>
five

Six

seven

eight

nine

ten

p will act as a default command for the lines addressed by g or v. If
you just want to display the lines, you do not need the last delimiter

or p.

-

g/line<CR>

This is the first line of text.
This is a second line,

and this is the third line.
This is the fourth line

If the lines are used as addresses for other ed commands, you will
need the beginning and ending delimiters. All of these methods of

addressing a

line can be used as addresses for ed commands.

5-27

LINE EDITOR TUTORIAL (ed)

SUMMARY OF LINE ADDRESSING

[abc/

Tabce?

g/abe/

v/abc/

The number of the line in the buffer.
The current line, the last line ed touched.

The command that gives the line number of the current
line.

The last line of the file.

Addresses lines 1 through the last line.

Addresses the current line through the last line.
Add a number of lines n to the current line address.

Subtract a number of lines n from the current line
address.

Search forward in the buffer and address the first line
containing the pattern of characters abc.

Search backward in the buffer and address the first line
containing the pattern of characters abc.

Address all lines containing the pattern abc.

Address all lines that do NOT contain the pattern abe.

5-28

2-1.

2-3.

2-4.

2-5.

2-6.

EXERCISE 2

EXERCISE 2

Create a file towns with the following lines:

My kind of town is

Chicago

Like being no where at all in
Toledo

I lost those little town blues in
New York

I lost my heart in

San Francisco

I lost $% in

Las Vegas

Display line 3.

What lines are displayed for the relative address range —2,+3p ?

The current line number is? Display the current line.
The last line says?
What line is displayed by the search:
?town<CR>
Now type in:
?<CR>

alone on a line. What happened?

Address all lines that contain the pattern "in". Then address all

lines that do NOT contain the pattern "in".

5-29

LIME EDITOR TUTORIAL (ed)

DISPLAY LINES 1N A FILE

The two commands that display lines of text in the editing buffer are
P and m.

Display Lines of Text

P Frimt or display limes of text im the editing buffer
om your terminal.

You have already used the p command in several examples.

The general form of the print command is:

address],address2p <CR>

P does not have parameters. However, it can be combined with the
substitute command line. This will be discussed later in this chapter.

Experiment with different line addresses and the p command on a file
in your directory. Try out the following tvpes of addresses.

Type in: 1LSp<CR>
The entire file should have been displayed on your terminal.
Type ini —Sp<CR>

The editor should have subtracted 5 from the current line and
displayed that line.

Type in: +2p<CR>

5-30

DISPLAY LINES IN A FILE
The editor should have added 2 to the current line and displayed that
line.
Type in: 1,/a/p<CR>
Did you figure out what happened? The editor searched for the next

"a" from the current line, and then displayed lines 1 through the first
line that contained "a" after the current line.

It is very important to delimit the search pattern to avoid errors in
ed. You have to delimit the search pattern "a" (enclose "a" between
slashes) so that ed can tell the difference between the search pattern
address "a" and an ed command a.

Display Lines of Text Preceded by the Line Address Number

N Display the line address number with
the line of text.

The n command is a convenient command when you are deleting,
creating, or changing lines. Besides displaying the lines of text, m
precedes each line with the line address number.

The general format for m is the same as p.
[addressl,address2n <CR>

Also, like p, n does not have parameters, but it can be combined with
the substitute command.

5-31

LINE EDITOR TUTORIAL (ed)

Try out m on your test file try-mie.

$ ed trv-me<CR>

137

1,5n <CR>

1 This is the first line of text.
2 This is a second line,

3 and this is the third line.
4 This is the fourth line.

5 five

6 Six

7 seven

8 eight

9 nirie

10 ten

Hxperiment with m wusing different line addyesses. In the next
example, the relative line addresses —5 and +2 are used. Also, the
range of lines addressed from line 1 through the first line after the
current line that contains an "ne" is also displayed.

/’

—Sn<CR>

O

n<CR>

)

Ane/n<CR>

W 0o N Ui o Do o =N

five
seven

This is the first line of text.
This is a second line,

and this is the third line
This is the fourth line.

five

Six

seven

eight

nine

CREATING TEXT

SUMMARY OF DISPLAY COMMANDS

p Displays on your terminal the specified lines of text in
the editing buffer.

n Displays on your terminal the line address numbers
with the specified lines of text in the editing buffer.

CREATING TEXT

ed has three basic commands for creating new lines of text:

a Append text,
i Insert text, and
c Change text.

Appending Text

A Create text after the specified line
in the buffer.

You have already used the append command in the Getting Started
section of this tutorial. The general format for the append command
is:

[addressija<CR>

The default for addressl is the current line. If you do not give a an
address, ed will make addressl the current line.

5-33

LINE EDITOR TUTORIAL (ed)

You have used the default address for a, now try using different line
numbers for addressl. In the next example, a new file called new-file
is created. The first append command uses the default address. The
second append command uses addressl as 1. The lines are displayed
with m so that you can see the line addresses.

KﬁS ed new-fle<CR>
‘new-file

Aa<CR>

Create some lines
of text in

this file.

LCR>

1,50 <CR>

I Create some lines
2 of text in

3 this file.
Tla<CR>

This will be line 2<CR>
This will be line 3<CR>

ALCR>

150 <CR>

i Create some lines

2 This will be line 2
3 This will be line 3
4 of text in

5 this file.

Notice that the address of the line "of text in" changes from two to
four after you append the two new lines.

Try out the following special addresses.

a<CR> Append after the current line.
$a<CR> Append after the last line of the file.

Oa<CR> Append text before the first line of the file.

CREATING TEXT

Each of these addresses is used to append text in the following
examples.

/

LKCR>

This is the current line

A<CR>

This line is after the current line. <CR>
LKCR>

~1L.p<CR>

This is the current line.
This line is after the current line.

$a<CR>

This is the last line now.<CR>
LCR>

$<CR>

This is the last line now.

-

Da<CR>

This is the first line now.<CR>
This is the second line now.<CR>
The line numbers change <CR>

as lines are added.<CR>

LCR>

1LAn<CR>

1 This is the first line now.

2 This is the second line now.
3 The line numbers change

4 as lines are added.

5-35

LINE EDITOR TUTORIAL (ed)

The 0a command can be replaced by the next command, the insert
command.

Inserting Text

The insert command creates text before a specified line in the editing
buffer.

I Imsert text before the specified lime.

N

The general format for i is the same as for a.
Jaddress1fi <CR>
As with the append command, you can insert one or more lines of

text. The text input mode is always ended with a period alone on a
line.

The example that follows inserts a line of text above line two; inserts
a line of text above the first line; and displays all the lines of the
buffer with n.

5-386

CREATING TEXT

/2i<CR>

Now this is line 2.<CR>
LCR>

1,$n<CR>

1 Line 1

2 Now this is line 2
3 Line 2

4 Line 3

5 Line 4

1H<CR>

In the beginning <CR>
1,$n<CR>

1 In the beginning
2 Line 1

3 Now this is line 2
4 Line 2

5 Line 3

6 Line 4

Take a few minutes to experiment with the insert command. Try out
the special line addresses.

Type in: A<CR>
or

Type in: $i<CR>

Changing Text

The change text command erases all of the specified lines and creates
new text beginning at addressl. You can create one or more lines of
text. The change command puts you in the text input mode, so you
must end the text input mode by a period alone on a line.

C Erase specified lines and
create mew text.

5-37

LINE EDITOR TUTORIAL (2d)

Since ¢ can erase a range of lines, the general format for the change
command. gives both addressl and address2.

Jaddressi, address2jc <CR>

Address] is the first line to be erased, and address2 is the last line of
the range of lines to be replaced by new text. If you only want to
erase one line of text, you would use only addressl. If you do not
type in addressl, ed assumes the current line is addressi.

The next example changes a range of lines. The first five lines are
displayed with m. Then lines one through four (1,4¢) are changed.
The lines in the buffer are displayed after the change.

fl,ﬁm <CR>

1 Line 1
2 Line 2
3 Line 3
4 Line 4
5 Line 5
1,4c<CR>

Change line 1<CR>
and line 2 through 4<CR>

LCR>

1,In<CR>

1 Change line 1

2 and line 2 through 4
3 Line 5

Now experiment with ¢. Try changing the current line.

5-38

EXERCISE 3

K.<CR>

This is the current line.

c<CR>

I am changing the current line. <CR>
LCR>

SLCR>

1 am changing the currvent line.

If you are not sure you have left the text input mode, it is a good idea
to type in the period a second time. If the current line is displayed,
you know you are in the command mode of ed.

SUMMARY OF CREATE COMMANDS

Append text after the specified line in the buffer.
Insert text before the specified line in the buffer.
Change the text on the specified lines to new text

End the text input mode with a period alone on a line,
and return to ed command mode.

3-1.

EXERCISE 3

As an experiment, create a new file ex3. Instead of using the
append command to create new text in the empty buffer, try the
insert command. What happened?

5-39

LIME EDITOR TUTORIAL (ed)

3-2. Enter the file fowns into ed. What is the current line?
Insert above the third line:
Mhinois <CR >
Insert above the current line:

or <CR>
Naperville <CR>

Insert before the last line:
hotels in <CR>
Display the text in the buffer preceded by line numbers.

3-3. In the file towns, display lines one through five and replace lines
two through five with:

London <CR>
Display lines one through three.
3-4. After you have completed exercise 3-3, what is the current line?

Find the line of text containing:

Toledo
Replace:

Toledo
with:

Peoria

Display the current line.

3-5. With one command line search for and replace:

New York
with:
Iron City

5-40

DELETING TEXT

DELETING TEXT

This section of the tutorial discusses the delete commands:
d Delete lines in the command mode;
u Undo the last command;

or <BACK SPACE> Delete characters in the text input mode;

and

@ Delete a line of text in the text input
mode or delete the current command
line.

Deleting Lines of Text

You have already deleted lines of text with the delete command d in
the section of Getting Started.

Delete one or more lines of text.

The general format for d is:
[addressl,address2]d <CR>

You can delete a range of lines, addressl through address2, or you
can delete one line using only addressl. If no address is given, ed
assumes you want to delete the current line.

The next example displays lines one through five and then deletes
the range of lines two through four.

5-41

LINE ERDITOR TUTORIAL (ed)

-

15n<CR>

1 1 horse

2 2 chickens

3 3 ham tacos

4 4 cans of mustard
5 5 bails of hay
2,4d <CR>

1,50 <CR>

1 1 horse

2 5 bails of hay

How would you delete only the last line of a file?

Sd<CR>

How would you delete the current line? One of the most common
errors in ed is forgetting to end the create mode with a period. A
line or two of text that you do not want may be added to the buffer.
In the next example, the print command is accidentally added to the
text before the create mode is ended. Then the current line, the print
command, is deleted.

/

a<CR>

Last line of text<CR>
1,$p<CR>

LCR>

p<CR>

1,%p

A<CR>

p<CR>

Last line of text.

Remember that 1,8p prints every line of the buffer.

542

DELETING TEXT

Before you do much experimenting with the delete command, you
may first want to learn about the u command.

Undo the Last Command

The undo command will erase the effect of the last command and
restore any text that had been added, changed, or deleted by that
command.

U Undo the last command.

If you create new text, change lines of text, delete lines of text, or
read new lines into the file, u undoes the effect of these commands.
(The read command will be discussed in the section on Moving Text).
Since u undoes the last command, it does not have any addresses or
arguments. The general form is:

u<CR>

u does not undo the write command or the quit command. However,
u will undo an undo command.

One example of the u command is restoring deleted lines. If you
delete all the lines in the file and then type in p, ed will respond
with a ? since there are no more lines in the file. Type in u and all
lines of the file will be restored.

C;,$d<CR>

p<CR>

?

u<CR>

p<CR>

This is the last line

5-43

LINE ERITOR TUTORIAL (ed)

Now try m on the append command.

S

SLCR>

This is the only line of text
a<CR>

Add this line<CR>
SCR>

1L5p <CR>

This is the only line of text
Add this line

u<<CR>

1.$p <CR>

This is the only line of text

Deleting Commands in the Text Input Mode

Deleting the Current Line

The @ will delete the current line of typing. The line will not be
erased from your terminal, but will end with an @ sign and the
cursor will move to the mext line. When you end the create mode
and display the lines of text, the deleted line will not appear.

@ Delete the current lime
im the text input mede.

B-44

DELETING TEXT

(a<CR>

I don’t want to add this @
a new line of text<CR>
LKCR>

1,$p <CR>

a new line of text

The above example begins creating a new file. The first line is
deleted in the text input mode, therefore, only the second line is
displayed by the 1,$p command. @ will also delete the current
command line. If you make an error typing in a command, type in @
instead of <CR> and ed will ignore the command. In the next
example, an incorrect address is given, so the command line is
cancelled with @.

1,8d@
1d<CR>

Deleting the Last Characters Typed

If you only made a mistake in typing the last few characters, the # or
<BACK SPACE> can delete those characters if you have not pressed
<CR>.

Delete the last character
just typed into the buffer.

5-45

LINE EDITOR TUTORIAL (ed)

| BACK
SPACE

N\

The <BACK SPACE> key will delete characters if you have
changed your environment to include this command. (See Chapter 7,
Shell Tutorial for changing youxr environment.)

/a<CR>

This is a typoo# <CR>
LCR>

SLCR>

This is a typo

Delete the last character just
typed imto the buffer.

In the above example, the exira ¢ in typo was deleted by #. When
the line is displayed the error is gone.

You must enter a # for each character that needs to be erased or
retyped. In the following example, the error is corrected and new
characters follow the last #. (The <BACK SPACE> will back up
over the characters.)

a<CR>

To the IRS, I mail a check<CR>

for one hun###thousand dollars. <CR>
LKCR>

LCR>

for one thousand dollars.

If you press <CR> before you correct the error, it is too late to
correct the error in the text input mode. However, once you have
left the text input mode, the substitute command, discussed in the
next section, can solve your problem.

5-46

DELETING TEXT

Create a junk file and practice each of these four commands until you
are comfortable with them.

SUMMARY OF DELETE COMMANDS

In the command mode:

d Delete one or more lines of text.
u Undo the last command.
@ Delete the current command line.

In the text input mode:
@ Delete the current line.

or
<BACK SPACE> Delete the last character typed in.

SUBSTITUTING TEXT

You can modify your text with the substitute command s.

5 Replace a pattern of characters with new text.

A\

The substitute command replaces the first occurrence of a string of
characters with new text. The general format is:

[addressl,address2]s/old text/nmew text/[command]<CR>

Since this is a more complicated format than the preceding
commands, let’s look at it piece by piece.

5-47

LIME

5-48

EDITOR TUTORIAL (ed)

address 1 and address2
The range of lines being addressed by s. The address
can be one line, addressl, a range of lines addressl
through address2 or the global search address. If no
address is given, ed will make the substitution on the
current line.

The substitute command, which is positioned right
after the line address.

fold text/
The text to be replaced. It is usually delimited by
backslashes, howewver, it can be delimited by other
symbols such as ? or a period. The old text matches
the first occurrence of the words or characters to be
replaced.

[mew text/
The text that replaces the old text. It is placed
between the second and third delimiters and replaces
the old text between the first and second delimiters.

command
This may be one of four commands that can be
placed after the last delimiter. The commands are:

g Change all occurrences of eold text on the
specified lines.

1 Display the last line of substituted text including
nonprinting characters. (See last section of this
chapter entitled Other Useful Commands and
Information.)

n Display the last line of the substituted text
preceded by the line number.

p Display the last line of substituted text.

SUBSTITUTING TEXT

Substituting on the Current Line

The simplest example of the substitute command is making a change
to the current line. You do not need to give the line address for the
current line.

s/old text/mew text/<CR>

In the next example, a typing error was made on the current line.
The example displays the current line, then makes the substitution to
correct the error. The old text is the ai of airor, the new text is er.

-

P<CR>

In the beginning, I made an airor
s/aifer/ <CR>

Pp<CR>

In the beginning, I made an error

Did you try out the example? Did you notice ed was quiet and gave
no response to the substitute command? You either have to display
the line with p or n, or place p or m on the substitute line. The
example below substitutes file for toad.

/

P<CR>

This is a test toad
s/toad/file/n<CR>

1 This is a test file

ed has a short cut for you. If you leave off the last delimiter of the
substitute command, the line will automatically be displayed.

5-49

LINE EDITOR TUTORIAL (ed)

Pp<CR>

This is a test file
s/file/frog<CR>
This is a test frog

Substituting on One Line

To substitute on a line that is not the current line, use addressi.
[addressijs/old text/mew text/<CR>

In this example, the current line is line three. Line one will be
corrected.

f

13p<CR>

This is a pest toad
testing testing

come in toad
LCR>

come in toad
1s/pest/test <CR>
This is a test toad

Notice that the last delimiter was omitted and ed printed out the line.

Substituting on a Range of Lines

If you want to make a substitution on a range of lines, you can
specify the first address, address1, through the last address, address2.

[addressi,address?}s/old text/mew text/<CR>
If ed does not find the pattern to be replaced on one of the lines, no

changes are made to that line. In the next example, all the lines in

5-50

SUBSTITUTING TEXT

the file are addressed for the substitute command. However, only the
lines that contain the old text, es, are changed.

/

1$p<CR>

This is a test toad
testing testing

come in toad

testing 1, 2, 3
1,9s/es/ES/n<CR>

4 tESting 1, 2, 3

When you specify a range of lines, p or n on the substitute line only
prints out the last line changed.

To display all the text that was changed use m or p alone in a
command line.

ﬁ

L$n<CR>

1 This is a tESt toad
2 tESting testing

3 come in toad

4 tESting 1, 2, 3

Notice only the first occurrence of "es" is changed on line 2. How do
you change every occurrence?

5-51

LINE EDITOR TUTORIAL (ed)

Global Substitution

One of the most versatile tools in ed is global substitution.

G Global substitution or seaxrch.

If you place the g command after the last delimiter of the substitute
command, you will change every occurrence on the specified lines.
Try changing every occurrence of es in the last example. If you are
following along, doing the examples as you read this, remember you
can use u to undo the last substitute command.

/

u<CR>

1,$p <CR>

This is a test toad
testing, testing
come in toad
testing 1, 2, 3
1,$s/es/ES/g<CR>
1,$p <CR>

This is a tESt toad
tESting tESting
come in toad
tESting 1, 2, 3

Another way to do the above example is to use the global search as
an address instead of the range of lines one through the last line

(1,$).

5-52

SUBSTITUTING TEXT

1,5p<CR>

This is a test toad
testing testing
come in toad
testing 1, 2, 3
gltest/s/es/ES/g<CR>
1,8p <CR>

This is a tESt toad
tESting tESting
come in toad
tESting 1, 2, 3

If the global search pattern is unique, and is the same as the old text
to be replaced, you can use an ed shortcut. You do not need to repeat
the pattern for the old text. ed remembers the search pattern and
uses it again as the pattern to be replaced.

g/old text/s//new text/g<CR>

f

1$p<CR>

This is a test toad
testing testing
come in toad
testing 1, 2, 3
gles/s[/ES/g<CR>
1,9p <CR>

This is a tESt toad
tESting tESting
come in toad
tESting 1, 2, 3

5-53

LINE EDITOR TUTORIAL (ed)

Experiment with the other search pattern addresses:

/pattern <CR>
?pattern <CR>
v/pattern <CR>

See how they react with the substitute command. In the example
below, the v/pattern is used to locate the characters in that are NOT
in the word testing.

v/testing/s/in/out <CR>
This is a test toad
come out toad

If you leave off the last delimiter all search addresses will print out
including the ones where no substitution occurs.

g/testing/s//jumping <CR>
jumping testing
jumping 1, 2, 3

Notice that the global search substitutes for only the first occurrence
of testing in each line. The lines are displayed on your terminal
because the last delimiter is missing.

EXERCISE 4

4-1. In your file towns change town to city on all lines but the line
with little town on it.

The file should read:

My kind of city is
5-54

4-2.

4-4.

EXERCISE 4

London
Like being no where at all in
Peoria
I lost those little town blues in
Iron City
I lost my heart in
San Francisco
I lost $% in
hotels in
Las Vegas
Try using ? as a delimiter. Change the current line
Las Vegas
to
Toledo

You could also use the change command ¢, since you were
changing the whole line.

Try searching backward in the file for the word
lost

and substitute
found

using the ? as the delimiter. Did it work? (The last line of the
file is the current line.)

Search forward in the file for
no

and substitute
NO

for it. What happens if you try to use ? as a delimiter?

5-55

LINE EDITOR TUTORIAL (ed)

Experiment with the various combinations of addressing a range of
lines and global searches.

What happens if you try to substitute for the $% ? Try to substitute
for the $ on line nine of your file.

Type in: 9s/%/Big $<CR>

What happened?

95/%/Bigh <CR>
I found $% in Big $

The substitution did not work correctly because $ is a special
character in ed. It will be discussed next in the section on special
characters.

SPECIAL CHARACTERS

If you tried to substitute for the $ in the line
I lost my $ in Las Vegas

you would find that instead of replacing the $, the new text was
placed at the end of the line. The $ is a specjal character meaning
the end of the line.

ed has several special characters that give you a shorthand for search
patterns and substitution patterns. The characters act as wild cards.
If you have tried to type in any of these characters, the result was
probably different than what you had expected.

5-56

SPECIAL CHARACTERS

The special characters are:

Match any one character.

Match zero or more occurrences of the preceding
character.

Match zero or more occurrences of any character
following the period.

Match the beginning of the line.

Match the end of the line.

Take away the special meaning of the special character
that follows.

Repeat the old text to be replaced in the new text of the
replacement pattern.

Match the first occurrence of a character in the brackets.

Match the first occurrence of a character that is NOT in
the brackets.

Match any one character.

The period will represent any one character in a search or substitute

pattern.

In the next example, a list of animals is searched for the

pattern of any letter followed by at.

5-57

LINE EDITOR TUTORIAL (ed)

/

1$p <CR>
rat

cat

turtie

cow

goat
g/.at<CR>
rat

cat

goat

Notice that the characters oaft in goat match .at.

*

The combination of the period and the * is a very potent wild card

for the substitution pattern. (See below)

Match zero or more occurrences
of the preceding character.

The * is shorthand for a character that is repeated several times in a
row in a search or substitute pattern. For example, if you were
creating some text and held down a key a little too long, the
character would be entered several times into your text. The * is an
easy way to substitute one character for those exira characters.

p<CR>
brrroke

s/br* /br<CR>
broke

It is important to include the b in the substitute pattern since * will
substitute for zero or more occurrences of r. Below is an example of
using only r*.

5-58

SPECIAL CHARACTERS

p<CR>
brrroke
s/r*[r<CR>
rbrrroke

The first zero or more occurrences of r is at the beginning of the line
where there are no occurrences of r.

® Match zero or more
occurrences of any
character after the

\ \ period.

If you combine the period and the *, the combination will match all
characters after the period. With this combination you can replace all
characters on the last part of a line.

p<CR>

Toads are slimy, cold creatures

s/are.*/are wonderful and warm<CR>
Toads are wonderful and warm

The .* can also replace all characters between two patterns.

p<CR>

Toads are slimy, cold creatures

s/are.*cre/are wonderful and warm cre<CR>
Toads are wonderful and warm creatures

5-59

LINE EDITOR TUTORIAL (ed)

Match the beginning of a line.

If you want to insert a word at the beginning of a line, use the " for
the old text to be substituted. This is very helpful when you want to
insert the same pattern in the front of several lines. The next
example places the word all at the beginning of each line.

/

1,$p <CR>

creatures great and small
things wise and wonderful
things bright and beautiful
1,%s/"/all /<CR>

1,8p <CR>

all creatures great and small
all things wise and wonderful
all things bright and beautiful

Match the end of the line.

This character is useful for adding characters at the end of a line or a
range of lines.

5-60

SPECIAL CHARACTERS

1$p<CR>

[love

1 need

I use

The IRS wants my
1,$s/$/ money.<CR>
1.$p <CR>

I love money.

I need money.

I use money.

The IRS wants my money.

Did you try out the last two examples? Did you remember to put a
space after the all or before many? ed adds the characters to the very
beginning or the very end of the sentence. If you forgot the space
before money, your file looks like the following:

-~

1,$s/$/money/ <CR>
1S%p <CR>

I lovemoney

1 needmoney

I usemoney

The IRS wants mymoney

The $ is a good way to add punctuation to the end of the line.

5-61

LINE EDITOR TUTORIAL (ed)

-

1,$p <CR>

I love money

I need money

I use money

The IRS wants my money
1,$s/%/./ <CR>

1$pf1/ <CR>

I love money.

I need money.

I use money.

The IRS wants my money.

Since . is not matching a character, but replacing a character, it does
not have a special meaning in this case. How could you change a
period in the middle of a line to another punctuation? You must take
away the special meaning of the period in the old text.

\ Take away the special meaning
of the folloewing special character.

If you want to substitute or search for some of the special characters,
you must precede them by a \ . To change a peried, precede the .
with a \ .

p<CR>
Way to go. Wow!
s/ \. [I<CR>

Way to go! Wow!

Because the backslash is a special character, it too must be preceded
by a \ if it is used in the old text.

5-62

SPECIAL CHARACTERS

p<CR>
Way to go\ Wow!
s/ \\ /I<CR>

Way to go! Wow!

& Repeat the old text to be replaced
in the new text of the replacement

\ pattern.

If you want to add text without changing the rest of the line, the & is
a useful shortcut. The & repeats the old text in the replacement
pattern, so you do not have to worry about typing the correct pattern
twice. The next screen shows an example of this.

p<CR>

The neanderthal skeletal remains
s/thal/& man's/<CR>

The neanderthal man's skeletal remains

%o Repeat the last replacement pattern.

ed automatically remembers the last pattern of characters in a search
pattern or the old text in a substitution. But, you must tell ed to
repeat the replacement characters in a substitution with the %. The %
pattern is very useful if you do not want to make a global change, but
you do want to make the same substitution on several different lines.
If you want to change money into gold for yourself, but not the IRS,
you would repeat the last substitution from line one on line three,
but not on line four.

5-63

LINE EDITOR TUTORIAL (ed)

-

1L$p<CR>

I love money

I need food

I use money

The IRS wants my money
1s/meney/gold <CR>

1 love gold

3s//%<CR>

I use gold

1L3p<CR>

I love gold

I need food

I use gold

The IRS wants my money

ed automatically remembers money, the old text to be replaced, so it
does not have to be repeated between the first two delimiters. The %
tells ed to use the last replacement pattern, gold.

Match the first occurrence
of a character in the bracket.

ed will try to match one of the characters enclosed in the brackets
and substitute the specified old text with new text. The brackets can
occur anywhere in the pattern to be replaced.

To conceal the large appetite of the anteater, the zoo keeper quietly
altered his file on the animal’s dietary habits as shown in the
following screen.

5-64

SPECIAL CHARACTERS

/

1,$p <CR>

Monday 33,000
Tuesday 75,000
Wednesday 88,000
Thursday 62,000
1,$s5/[6789])/4<CR>
Monday 33,000
Tuesday 45,000
Wednesday 48,000
Thursday 42,000

ants
ants
ants
ants

ants
arnts
ants
ants

In the example above, the first occurrence of 6, 7, 8, or 9 was
changed to 4 on each line that ed found a match.

The next example deletes the Mr or Ms from a list of names.

/

1,5p <CR>

Mr Arthur Middleton
Myr Matt Lewis

Ms Anna Kelley

Ms M. L. Hodel
1,8s/Mjrs] //<CR>
1$p<CR>

Arthur Middleton
Matt Lewis

Anna Kelley

M. L. Hodel

el

Match the first
occurrence of a character
that is not in

the brackets.

If the caret is placed as first character in the brackets it tells ed to
replace characters that are NOT one of these characters. However, if
the caret is placed at any other position other than the first character,

it will stand for the character .

5-65

LINE EDITOR TUTORIAL (ed)

If a copy of John’s grades were sent to him as a file in his login, he
could enter the file into ed and make the following changes to
correspond with his own evaluation of his performance.

1$p<CR>

grade A Computer Science

grade B Robot Design

grade A Boolean Algebra

grade D Jogging

grade C Tennis

1,8s/grade ["AB]/grade A<CR>

1,%p <CR>

grade A Computer Science
grade B Robot Design
grade A Boolean Algebra
grade A Jogging

grade A Tennis

Whenever you use special characters as wild cards in the old text to
be changed, remember to use a unique pattern of characters. In the
above example, if you had used only

1,$s/["AB]/A<CR>

you would have changed the g in grade to A. Try it.

As with all commands in ed, experiment with these special characters.
Find out what happens (or does not happen) if you use them in
different combinations.

5-66

EXERCISE &

SUMMARY OF SPECIAL CHARACTERS

%

[

Match any one character in a search or substitute
pattern.

Match zero or more occurrences of the preceding
character in a search or substitute pattern.

Match zero or more occurrences of any characters
following the period.

Match the beginning of the line in the substitute
pattern to be replaced or in a search pattern.

Match the end of the line in the substitute pattern to be
replaced.

Take away the special meaning of the special character
that follows in the substitute or search pattern.

Repeat the old text to be replaced in the new text
replacement pattern.

Repeat the last replacement pattern.
Match the first occurrence of a character in the brackets.

Match the first occurrence of a character that is NOT in
the brackets.

5-1.

EXERCISE 5

Create a file that contains the following lines of text.

A Computer Science
D Jogging
C Tennis

5-67

LINE

5-2.

5-3.

5-4.

5-68

EDITOR TUTORIAL (ed)

What happens if you try the command line:

1,%s/["AB]/A/<CR>
Undo the above command. How would you make the C and D
unique? (Hint: they are at the beginning of the line ") Do not
be afraid to experiment!
Insert the following line above line 2:

These are not really my grades
Using brackets and the beginning of the line character ", create
a search pattern that you could use to locate the line you
inserted. There are several ways to address a line. When you
edit text, use the way that is quickest and easiest for you.
With one command, change the next three lines

I love money

I need money

The IRS wants my money
to the following lines:

It's my money

It's my money

The IRS wants my money
Using two command lines: change the first line from money to
gold, change the last two lines from money to gold without
using the characters money or geld.
How would you change the line

1020231020
to

10202031020

without repeating the old digits in the replacement pattern?

MOVING TEXT

5-5. Create a line of characters
* \N & %"

Substitute a letter for each character. Did you need to use the
backslash for every substitution?

MOVING TEXT

You have now learned to address lines, create and delete text, and
make substitutions. ed has one more set of versatile and important
commands. You can move, copy, or join lines of text in the editing
buffer. You can also read in text from a file that is not in the editing
buffer, or write lines of the file in the buffer to another file in the
current directory. The commands that move text are:

m Move lines of text.
t Copy lines of text.
Join contiguous lines of text.

Write lines of text to a file.

s -

Read in the contents of a file.

=

Move Lines of Text

You can move paragraphs of text to another place in the file, or you
can move an entire subroutine of a program to another place in the
computer program you are creating in ed.

M Move one or more lines of text.

The general format for the move command is:

[addressl,address2]mjaddress3]<CR>

5-69

LINE EDITOR TUTORIAL (ed)

addressl,address2
The range of lines to be moved. If only one line is
moved, only addressl is given. If no address is
given, the current line is moved.

m The move command.

address3 Place the text after this line.

The following lines are in a file.
I want to move this line.
I want the first line
below this line.

Type in: 1m3<CR>

ed will move line 1 below line 3.

I want to move this line.

I want the first line
below this line.
I want to move this line.

The next screen shows how this will appear on your terminal.

K 1,$p <CR>

I want to move this line.
I want the first line
below this line.
Im3<CR>

1L$p<CR>

I want the first line
below this line.

I want to move this line.

5-70

MOVING TEXT

If you want to move a paragraph of text, addressl and address2
would be the range of lines of the paragraph.

The following example depicts moving a block of text. Line 8
through line 12 are moved below line 65.

This is line 8

It is the beginning of a
very short paragraph.
This paragraph ends
on this line.

Move the block of text
below this line.

——=- This is line 8

It is the beginning of a
very short paragraph
This paragraph ends
on this line.

The next screen shows how the command would appear on your
terminal. The m command is used so that you can see how the line
numbers change.

5-71

LINE EDITOR TUTORIAL (ed)

K

8,12n<CR>

8 This is line 8.

9 It is the beginning of a
10 very short paragraph.
11 This paragraph ends
12 on this line.

64,65n <CR>

64 Move the block of text
65 below this line.
8,12m65 <CR>

59,65n <CR>

59 Mowve the block of text
60 below this line.

61 This is line 8.

62 1t is the beginning of a
63 very short paragraph.
64 This paragraph ends
65 on this line.

How do you think you would move lines above the first line of the

file? Try the following command.

Type in: 3,4m0<CR>

When address3 is 0, the lines are placed at the beginning of the file.

Copy Lines of Text

The copy command t acts like the m command except that the block
of text is not deleted at the original address of the line. A copy of
that block of text is placed after a specified line of text.

T Cepy lines of text and place them

after a specified line.

5-72

MOVING TEXT

The general format of the t command also looks like the m command.

[addressl,address2]t{address3]<CR>

addressi,address?
The range of lines to be copied. If only one line is
copied, only addressl is given. If no address is
given, the current line is copied.

t The copy command.

address3 Place the copy of the text after this line.

You may want to reiterate a set of directions. You can place a copy of
those lines of text below another line in the file. In the next example
you want to copy three lines of text below the last line.

Safety procedures:

If there is a fire in the building:
Close the door of the room to seal off the fire

Break glass of nearest alarm
Pull lever
Locate and use fire extinguisher

A chemical fire in the lab requires that you:

Break glass of nearest alarm
Pull lever
Locate and use fire extinguisher

The commands and ed’s responses to those commands are displayed
in the next screen. The m command displays the line numbers.

5-73

LINE EDITOR TUTORIAL (ed)

-

The text in lines six through eight remain in place.
three lines is placed after line 50.

Experiment with m and t on one of your files.

Joining Contiguous Lines

58n<CR>

5 Close the door of the room, to seal off the fire.
6 Break glass of nearest alarm

7 Pull lever

8 Locate and use fire extinguisher

30n<CR>

30 A chemical fire in the lab requires that you:
6,8t30 <CR>

30,$n <CR>

30 A chemical fire in the lab requires that you:
31 Break glass of nearest alarm

32 Pull lever

33 Locate and use fire extinguisher
6,8n<CR>

6 Break glass of nearest alarm

7 Pull lever

8 Locate and use fire extinguisher

A copy of those

The j command joins the line below the current line with the current

line.

j Join the line below the current

line with the current line.

5-74

MOVING TEXT

The j command does not accept an address, so the general format for
the j command is:

j<CR>

If the current line is not the line you want joined, the easiest way to
make it the current line is to display it with p or n.

1.2p<CR>

Now is the time to join

the team.

p<CR>

the team.

Ip<CR>

Now is the time to join
j<CR>

p<CR>

Now is the time to jointhe team.

Notice that there is no space inserted between the last word join and
the first word of the next line the. You will have to place the space
between them with the s command.

Write Lines of Text to a File

If you are writing the same letter to several different people, you may
want to keep the body of the text in a special file to use over again.
Those lines of text can be written to the special file with the w
command.

w Write a copy of the contents of the
editing buffer to a file.

5-75

LINE EDITOR TUTORIAL (ed)

The general format for the w command is:
[address],address2}w [filename]<CR>

address1,address?
The range of lines to be placed into another file. If
you do not use addressl or address2, the entire file is
written into a new file.

W The write command.

filename The name of the new file that contains a copy of the
block of text.

In the next example the body of the letter is saved in a file called
memo, so that it can also be sent to other people.

(1$n<CR>

1 March 17, 1985

2 Dear Kelly,

3 There is a meeting in the
4 green room at 4:30 P.M.
5 today. Refreshments will
6 be served.

3,6w memo<CR>

87

The w command has placed a copy of lines three through six into a
new file memo. ed responds to the w command with the number of
characters in the new file.

Problem:

If there was a file called memo in the current directory, it has been
erased. The w command will overwrite, that is, erase the current file
called memo, and put the new block of text in the file without giving
any warning. In the next section of this tutorial on Special Commands,
you will learn how to execute shell commands from ed. Then, you
can list the file names in the directory to make sure that you are not
overwriting a file.

5-76

MOVING TEXT

Problem:

You cannot write other lines to the file memo. If you tried to add
lines 13 through 16, the existing lines (3 through 6) would be erased
and the file would only contain the new lines 13 through 16.

Read in the Contents of a File

The body of your memo is in a file called memo. How do you copy it
from that file into the editing buffer?

R Read in 2 copy of the contents of another file
into the current editing buffer.

The general format for the read command is:
[addressijr filemame<CR>

address1 The text will be placed after the line addressl. If
addressl is not given, the file is added to the end of
the buffer.

r The read command.

filename The name of the file that will be copied into the
editing buffer.

Using the example from the write command, the next screen depicts
editing a new letter and then reading in the contents of the file
memo.

5-77

LINE EDNTOR TUTORIAL. (ed)

/

1,$n<CR>

1 March 17, 1985
2 Dear Michael,

3 Are you free later today?
4 Hope to see you there.
3r memo <CR>

87

3,$n <CR>

3 Are you free later today?
4 There is a meeting in the
5 green room at 4:30 P.M.
6 today. Refreshments will
7 be served.

8 Hope to see you there.

ed responds to the read command with the number of characters in
the file memo that are now added to the editing buffer.

It is always a good idea to display new or changed lines of text to be
sure that they are correct.

SUMMARY OF COMMANDS TO MOVE TEXT

Move lines of text.
Copy lines of text.
Join contiguous lines.

Write text into a new file.

e T T OB

Read in text from another file.

5-78

6-1.

6-2.

OTHER USEFUL COMMANDS AND INFORMATION

EXERCISE 6

There are two ways to copy lines of text in the buffer, one is the
copy command, the other is writing the lines of text to a file
and then reading the file into the buffer. Writing to a file and
then reading the file into the buffer is a longer process. Can
you think of an example where this would be more practical?
What commands would copy lines 10 through 17 of file exer into
the file exer6 at line 77

Lines 33 through 46 give an example that you want placed after
line 3, and not after line 32. What command performs this task?

If you are on line 10 of a file and you want to join lines 13 and
14, what commands would you issue?

OTHER USEFUL COMMANDS AND INFORMATION

There are four other commands and a special file that will be useful
to you when you are editing your files. They are the following:

h,H The help commands that give error messages.
1 Display characters that are not normally displayed.
£ Display the current file name.

! Temporarily escape ed to execute a shell command.

ed.hup When a system interrupt occurs, the ed buffer is saved in
a special file named ed.hup.

Help Commands

You may have noticed when you were editing a file that ed responds
to some of your commands with a 7. The 7 is a diagnostic message
indicating there is an error. The help commands give you a short
message to explain the reason for the most recent diagnostic.

5-79

LINE EDITOR TUTORIAL (ed)

H Display a short error message to explain
the ? diagnostic.

There are two help commands.

h Display a short error message that explains the reason
for the most recent 7.

H Place ed in a help mode that displays the short error
message each time ? is displayed. The next H turns off
the help mode.

Let’s look at an example of h first. At the beginning of this tutorial,
you learned that if you tried to quit ed without writing the changes
in the buffer to a file, you would get a 7. Try it now using h to find
out what the problem is. When the ? is displayed, type in h.

g <CR>
?

h<CR>
warning: expecting ‘w’

The ? is displayed when you give a new file name to the ed
command line. Examine that ? with h to see what the error message
is.

ed newfile<CR>

? newfile

h<CR>

cannot open input file

5-80

OTHER USEFUL COMMANDS AND INFORMATION

This error message is telling you there is no file called newfile, or if
there is a file named newfile ed is not allowed to read the file.

Now let's examine the H command. This command will respond to
the ? and then turn on the help mode of ed, so that ed will give you
an explanation each time the ? is displayed until you turn off the
help mode with a second H. The next screen shows the help mode
turned on by H. The various error messages are displayed in
response to some common mistakes.

-

e newfile <CR>

? newfile

H<CR>

cannot open input file
[hello<CR>

?

search string not found
1,22p<CR>

7

line out of range
a<CR>

This is line one.
LKCR>

s/% end of lime<CR>
?

illegal or missing delimiter
8s/$/ end of line<CR>
?

unknown command
H<CR>

q<CR>

?

h<CR>
warning expecting ‘w’

In the preceding example, the help mode is turned on by H and
displays the error message for ? newfile. Then it displays some of the
error messages you may encounter in an editing session.

5-81

LINE EDITOR TUTORIAL (ed)

/hello <CR> There is no search pattern hello since the buffer is
empty.

search string not found

1,22p <CR> There are no lines in the buffer so ed cannot print
the lines.

line out of range

A line of text is appended to the buffer to show you some error
messages associated with the s command.

s/$ end of line<CR>
The delimiter between the old text to be replaced and the
new text is missing.

illegal or missing delimiter

3s/%/end of line<CR>
addressl was not typed in before the comma, ed does not
recognize ,$.

unknown command

The help mode is then turned off and h was used to discover the
meaning of the last ? . While you are learning ed, you may want to
leave the help mode turned on so you will use H. However, once
you become more adept at editing in ed, you will only need to see
the error message occasionally and sc you will use h.

Display Nonprinting Characters

If you are typing in a tab character, normally the terminal will
display up to eight spaces to the next tab setting. (Your tab setting
may be more or less than eight spaces. See Chapter 7, Shell Tutorial,
on setting stty-tabs.)

If you want to see how many tabs you have inserted into your text,
you would use the 1 command.

5-82

OTHER USEFUL COMMANDS AND INFORMATION

L Display nomnprinting characters.

The general format for the 1 command is the same as for n and p.
[address,address2I <CR>

addressl,address?2
The range of lines to be displayed. If no address is
given, the current line will be displayed. If only
addressl is given, only that line will be displayed.

1 The command that displays the nonprinting
characters along with the text.

The 1 command denotes tabs with a > character. 1 displays some
control characters. These characters are typed in by holding down
the CTRL key and pressing another character key. The key that
sounds the bell is control g. It is displayed as \07 which is the ASCII
hexadecimal representation (the computer’s code) for control g.

Type in two lines of text that contain a control g, denoted in the text
by <"g>, and a tab denoted by <tab>. Then use the 1 command to
display the lines of text on your terminal as shown below.

-

a<CR>

Type in <"g> control g.<CR>
Type in a <tab> tab.<CR>
CL<CR>

1,21 <CR>

Type in \O7 control g

Type in a > tab.

Did the bell sound when you typed in <"g>?

5-83

LINE EDITOR TUTORIAL (ed)

The Current File Name

In a long editing session, you may forget the file name. The f
command will remind you which file is currently in the buffer.

Or, you may want to preserve the original file that you entered into
the editing buffer and write the contents of the buffer to a new file.
In a long editing session, you may forget, and accidentally overwrite
the original file with the customary w and q command sequence.
You can prevent this by telling the editor to associate the contents of
the buffer with a new file name while you are in the middle of the
editing session. This is done with the £ command and a new file
name.

F Displays or changes the current file name.

The general format to display the current file name is just f alone on
a line.

f<CR>

To see how f works, enter a file into ed and then use the f command.
The file oldfile is entered into ed in the example.

(ed oldfile<CR>
323

f<CR>

oldfile

5-84

OTHER USEFUL COMMANDS AND INFORMATION

The general format to associate the contents of the editing buffer with
a new file name is:

f newfile<CR>

If no file name is given to the write command, ed remembers the file
name given at the beginning of the editing session and writes to that
file. If you do not want to overwrite the original file, you must either
use a new file name with the write command, or change the current
file name using the £ command followed by the new file name. Since
you can wuse f at any point in the editing session, you can
immediately change the currently remembered file name, thus
protecting the original file. You can then continue with the editing
session without worrying about overwriting the original file.

The next screen shows the commands for entering the editor with
oldfile and then changing the current file name to newfile. A line of
text is added to the buffer and then the write and quit commands are
given.

f

ed oldfile<CR>
323

f<CR>

oldfile

f newfile<CR>
newfile

a<CR>

Add a line of text. <CR>
LCR>
w<CR>

343

q<CR>

Once you have returned to the shell command mode, you can list
your files and see that there is a new file named newfile. newfile
should contain a copy of the contents of oldfile plus the new line of
text.

5-85

LINE EDITOR TUTORIAL (ed)

Escape to the Shell

How can you make sure you are not overwriting an existing file
when you write the contents of the editor to a new file name? You
need to return to the shell command mode and list your files. The !
allows you to temporarily return to the shell and execute a shell
command line and then return to the current line of the editor.

Temporarily escape to the shell.

The general format for the escape sequence is:

Ishell command line<CR>

shell response to the command line
!

When you type in the ! as the first character on a line, the shell
command must follow on that same line. The response to the shell
command line will be displayed. When the shell command is
finished executing, the ! will be displayed alone on a line. This tells
you that you are back in the editor at the current line.

If you want to return to the shell to find out the correct date, you
could type in ! and the shell command date.

(p<CR>

This is the current line

! date<CR>

mon Apr 1 14:24:22 CST 1988
!

p<CR>

This is the current line.

5-86

OTHER USEFUL COMMANDS AND INFORMATION

The screen first displays the current line. Then, the command is
given to temporarily leave the editor and display the date. After the
date is displayed, you are returned to the current line of the editor.

If you want to execute more than one command on the shell
command line, see the ; in the section on Special Characters in
Chapter 7, Shell Tutorial.

Recover From a System Interrupt

What happens if you are creating text in ed and there is an interrupt
to the system, you accidentally hung up on the system, or your
terminal was unplugged? Is all lost? When there is an interrupt to
the system, the UNIX system trys to save the contents of the editing
buffer in a special file named ed.hup. You can either use the shell
command to move ed.hup to another file name, or you can put ed.hup
back into ed and use the f command to associate the contents of the
editing buffer with a new file name. The next screen shows placing
ed.hup in ed and giving it a new file name.

ed ed.hup<CR>
928
f myfile<CR>

myfile

Conclusion

You now are familiar with many useful commands in ed. The
commands that were not discussed in this tutorial, such as G, P, Q
and the use of {) and { }, are discussed in the Editing Guide. Their
functions are also listed under the ed command in the UNIX System
User Reference Manual. (See Appendix A.) You can experiment with
these commands and try them out to see what tasks they perform.

5-87

LINE EDITOR TUTORIAL (ed)

SUMMARY OF OTHER USEFUL COMMANDS

AND INFORMATION

f

f newfile

I cmd

ed.hup

Display a short error message for the preceding
diagnostic ?.

Turn on the help mode. An error message will be
given with each diagnostic ?. The second H turns
off the help mode.

Display nonprinting characters in the text.

Display the current file name.

Change the current file name associated with the
editing buffer to newfile.

Temporarily escape to the shell to execute a shell
command cmd.

The editing buffer is saved in ed.hup if the terminal
is hung up before a write command.

EXERCISE 7

7-1. Create a new file newfilel. Once you have entered ed, change
the current file name to currentl. Create some text and write
and quit ed. If you do the shell command lIs you will see the
directory does not contain a file called newfilel.

5-88

7-2.

7-3.

EXERCISE 7

Create a file named filel. Append some lines of text to the file.
Leave the append mode. Do not write the file. Turn off your
terminal. Turn on your terminal and log in again. Do an Is in
the shell. Is there a new file ed.hup? Place ed.hup in ed. How
do you change the current file name to file1? Display the
contents of the file. Are the lines the same lines you created
before you turned off your terminal?

While you are in ed, temporarily escape to the shell and send a
mail message to yourself.

5-89

LINE ERDITOR TUTORIAL (ed)

ANSWERS TO EXERCISES

Exercise 1

1-1.

$ ed junk<CR>

? junk

a<CR>

Hello world. <CR>
KCR>

w<CR>

12

q<CR>

$

$ ed junk<CR>

12

1,$p <CR>

Hello world. <CR>
q<CR>

$

The system did not respond with the warning question mark because
you did not make any changes to the buffer.

5-90

1-3.

Exercise 2

-

2-1.

ANSWERS TO EXERCISES

o~

$ ed junk<CR>
12
a<CR>

This is not Mr. Ed, there is no horsing around <CR>

LCR>
1,$p <CR>
Hello world.

This is not Mr. Ed, there is no horsing around

q<CR>

?

w stuff <CR>
60

q<CR>

$

$ ed towns<CR>

? towns

a<CR>

My kind of town is<CR>
Chicago<CR>

Like being no where at all in<CR>
Toledo<CR>

I lost those little town blues in<CR>
New York<CR>

I lost my heart in<CR>

San Francisco<CR>

I lost $$ in<CR>

Las Vegas<CR>

CR>

w<CR>

164

5-91

LINE EDITOR TUTORIAL (ed)

3<CR>
Like being no where at all in

2-3.

-

—2,+3p<CR>

My kind of town is

Chicago

Like being no where at all in
Toledo

I lost those little town blues in
New York

2-4.

=<CR>
6
6<CR>
New York

2-5.

$<CR>
Las Vegas

?town <CR>

I lost those little town blues in
?<CR>

My kind of town is

5-92

2-7.

ANSWERS TO EXERCISES

—

Exercise 3

3-1.

g/in<CR>

My kind of town is
Like being no where at all in
1 lost those little town blues in

I lost my heart in
I lost $%-in

v/in<CR>
Chicago
Toledo

New York
San Francisco
Las Vegas

//'

$ ed ex3<CR>
?ex3

i<CR>

7

g<CR>

The ? after the i indicates there is an error in the command. There is
no current line to insert text before that line.

5-93

LINE EDITOR TUTORIAL (ed)

3-2.

5-94

($ ed towns<CR>

164

n<CR>

10 Las Vegas
3i<CR>

Ilinois<CR>

LKCR>

A<CR>

or<CR>

Naperville <CR>

<LCR>

$i<CR>

hotels in<CR>

LKCR>

1,$n<CR>

1 my kind of town is
2 Chicago

3 or

4 Naperuville

5 Hlinois

6 Like being no where at all in
7 Toledo

8 I lost those little town blues in
9 New York

10 I lost my heart in
11 San Francisco

12 I lost $% in

13 hotels in

14 Las Vegas

3-3.

3-4.

3-5.

ANSWERS TO EXERCISES

1,50 <CR>
1 My kind of town is

2 Chicago

3 or

4 Naperville

5 [llinois

2,5c<CR>

London<CR>

LKCR>

13In<CR>

1 My kind of town is

2 London

3 Like being no where at all

-

LKCR>

Like being no where at all
[Tol<CR>

Toledo

c<CR>

Peoria<CR >

L<CR>

LKCR>

Peoria

-~

LCR>
[New Y/c<CR>
Iron City <CR>
L CR>
LCR>
Iron City

Your search string need not be the entire word or line. It only needs to be

unique.

5-95

LINE EDITOR TUTORIAL (ed)

Exercise 4

/

4-1.

v/little/s/town/city <CR>
My kind of city is

London

Like being no where at all in
Peoria

Iron City

I lost my heart in

San Francisco

I lost $% in

hotels in

Las Vegas

The line
I lost those little town blues in
was not printed because it was NOT addressed by the v command.

4-2.

<CR>

Las Vegas

s?Las Vegas?Toledo <CR>
Toledo

4-3.

?lost?s??found <CR>
I found $$ in

5-96

4-4.

ANSWERS TO EXERCISES

/no?s??NO <CR>

?

Ino/s] INO<CR>

Like being NO where at all in

You can not mix delimiters such as / and 7 in a command line.

Exercise 5

5-1.

ﬁ

$ ed filel<CR>

? filel

a<CR>

A Computer Science <CR>
D Jogging<CR>

C Tennis<CR>
<CR>
1,$s/["ABJ/ A/ <CR>
1$p <CR>

AA Computer Science
A Jogging

A Tennis

u<CR>

1,$s/ " AB)/A<CR>
1,8p <CR>

A Computer Science
A Jogging

A Tennis

5-97

LINE EDITOR TUTORIAL (ed)

-

2i<CR>

These are not really my grades. <CR>
~<CR>

1,$p<CR>

A Computer Science

These are not really my grades.
A Tennis

A Jogging

I'TA]J<CR>

These are not really my grades
?[T]I<CR>

These are not really my grades

5-3.

1$p<CR>

I love money

I need money

The IRS wants my money

g/ 1/s/L*m /it's my m<CR>
It’s my money

It’s my money

/s/money/gold <CR>
It's my gold
28s//%<CR>

The IRS wants my gold

5-4.

5/10202/&0<CR>
10202031020

5-98

5-5.

ANSWERS TO EXERCISES

f

a<CR>

N &% T T<CR>
LCR>

s/*[a<CR>

a. . \& %" *
s/*/b<CR>

a. \& %" b

Because there were no preceding characters, * substituted for itself.

C/ W e<CR>

ac\& %" b
s/ WdAd<CR>
acd& %" b
s/&fe<CR>
acde% b
s/%[E<CR>
acdef b

The & and % are only special characters in the replacement text.

s/ \"/g<CR>
acdefgh

5-99

LINE EDITOR TUTORIAL (ed)

Exercise 6

6-1. Any time you have lines of text that you may want to have repeated
several times, it may be easier to write those lines to a file and read in

the file at those points in the text.

If you want to copy the lines into other files you must write them to a
file and then read in that file into the buffer containing another file.

-~

ed exer<CR>

725

10,17 w temp <CR>
210

q<CR>

ed exers <CR>

305

7r temp<CR>

210

The file temp can be called any file name.

6-2.

33,46m3<CR>

6-3.

10

13p<CR>

This is line 13.

j<CR>

Pp<CR>

This is line 13 and line 14.

Remember the .= will give you the current line.

5-100 ~

ANSWERS TO EXERCISES

Exercise 7

~

7-1.

ed newfilel<CR>

? newfilel

f currentl <CR>

current]

a<CR>

This is a line of text<CR>
Will it go into newfilel<CR>
or into currentl <CR>
<CR>

w<CR>

66

q<CR>

Is<CR>

bin

currentl

rje

-~

ed filel<CR>

? filel

a<CR>

I am adding text to this file. <CR>
Will it show up in edhup?<CR>
<CR>

Turn off your terminal.

Log in again.

5-101

LINE EDITOR TUTORIAL (ed)

/

ed edhup<CR>

58

f filel<CR>

filel

1,$p<CR>

I am adding text to this file.
Will it show up in ed.hup?

/

ed filel<CR>

58

! mail mylogin<CR>

You will get mail when<CR>
you are done editing!<CR>
~<CR>

I<CR>

5-102

Chapter 6

SCREEN EDITOR TUTORIAL (vi)

GETTING ACQUAINTED WITH Wi coevnnnnnmmescnomansasnnnnnanassnnnennassssasasanmnnnssssesnnanssnnnnnnns
HOW TO READ THIS TUTORIAL ...ccennrrvennnasnscnrimmnnnnmnsnnnansnsenssmmnnsnnnassasssnsnnmssnnnsnnne

GETTING STARTED ...ocninincncmmranmmnnsnannnrssnnnsntnasmssnsnmnmansnnsssanssansassanasssssssnessssssnnnnnn
How to Set Terminal ConfigQUIARION...cccemsmarensnnnnnrsnnnmnsrnssnnnnannnnnsnssnsnsesnannsannnna
HOW R0 ACCEOSES Winrnrnnnnnnsnnsnsnnnnmnmnnnnssssamemnonmanannssssssnnssnsssnssnnannsnnnsssessnnnasanannannes

HOW 10 CF@ATE T@XE cnrrreennrannmancnmnnerarmassnrsnrnsansnnsnssseasassnsmnsmnssnnsanssassanansenmmoasnnns

How to Leave the Append MOEc.coocemmrmanarcmnmnnsannananananssnesaananasnasannnsnnennn
HOW £0 MOVE the CUTSOR cornrinnsnnrnnnnorenmmnnnnnnnannnssnsnsmnssansnnnnnsnsnnsnnsssnnsnnnnnnnnnnnsonn
HOW £0 Delete TeXE i rrceirnnnnnnnmsomnnnnnnnnannmnanasmansantnnsnnnnssnnmansnasnnnasanananssnan
HOW 10 A T@XR orcnnnimnnennrnnnnnmnarnnnesanmonsanamnasmnssnanannansnnressnanansannnnsnesesessnnsssnnensn

HOW £0 QUUIL Vil onnninnnrnnnrssemnsnsnamamnsnmnnnnmanannmnnsnnassnnnnnsnrnsssanasmnnnsnrnnnnsnsesnannrnnnnmnsn
EXERCISE T rueuinininercammnnnnsnnsrasnsaassssmmmsnsnmsnssssnsaannnsmnnnnnsnnnsnnsmsssnnmssssnnsssnsns onnsnmmensan

POSITIONING THE CURSOR IN THE WINDOWcnraremmecnmnnnsnncnnnensnsnsnsnnnnnnsnanannanes
Character POSHIOMINMG - cuunrrrrmrrccrrrnrannnnnnesancmesnmennnns s ranssasnannnansnnnnnnnnsnnnn
Positioning the Cursor to the Right oF Left .ririiinmnnmrsrenceanennnnnennenncnnn
Positioning the Cursor at the End or Beginning of a Line ...cccoccevnnnnenncan
Searching for a Character omn 8 LiN@ . rerecennennnenmnornennmnnnnnnnssnsrransnnnnnnnnsnnn
Line PoOSItiONING..ciaremmninnmnmnnnnnnnnssnsassanannnnnnnnnrannnnsannessananaaannnnananosessnananssnnsnane
WORd POSIHIONING ...cicnnrnrannscrannnnnnncnmnmnrenanananomnmmsnnannnnnnnnnssssseessannsnnnnsnananasanannne

Positioning the Cursor by Sent@nCescccwrcmmamcmerrrnmnnresnsnnnanannssrnmnnnesnmnanasnnsn

Positioning the Cursor by Paragraphs.

Positioning in the Wi OW ... rrernncmnrnrnrnrasasnsnsannsssnsannnsnsnnnnsssssnnnnnnnenneansnesns

POSITIONING THE CURSOR IN THE FILE .
Scrolling the TeXth....ccierreramnreammmnnennosnnnnsnsnsnsnasnane

Go to a Specified Line.
Line NUMDEIS ...cconevannmnnnsnnnnnnannnnnnnns

Search for a Pattern of Characters

PAGE

6-15

6-16
6-18
6-18
6-20
6-21
6-23
6-25
6-27
6-29
6-30

6-34
6-35
6-40
6-40
6-41

PAGE

EXERCISIE 2 ..rinrniuereannarinnarnanannnsmnnannmrasnsssnasnnssnnmssennnasnnsnnsssnrnsannmennansnnsnnennanssnsnnnnnnan 6-45

CREATING TEXT.. 6-46
Append Text.. 6-47
Insert Text......coveanne mnnnnn - . e 6-47

EXERCISE 3..cooriecnierninnanninsnnnsnnsnmannaennsannnnnessnnsannesannsssnmnnssmnnsemassnmnnssnseasnssnnssnnsass 6-50

DELETING TEXT .crvarmnnanennrenncnnnmmnsnsnnsnnnmnnnsnnnnnsnnnns . 6-81
Delete Commands in the Text input Mode .. 6-51
Undo the Last Command.....cceeemminarennsenn 6-53
Delete Commands in the Command Mode 6-54

Delete Text ODJRCES wv i rnnrrncnnannnmrasnnnannssannannsncnnnnmnsnmsaannemmnsnsnssmnonnannnn 6-55

EXERCISE 4...occoirnnnnmennnmnanennsennan eReaennmA A AAR RS Ama e R R AR R ARARRan s n AR 6-60

CHANGING TEXT ccameemrmmnnnnnnnn AR RANARRRA AR AR AR AR AR AR R R AR AR SRR nn S AR AR 6-60
[T e T E Lot TiTe IR Y A oY 6-61
Substituting Text 6-62
Changing Text 6-63

CUTTING AND PASTING TEXT ELECTROMICALLY ..corerrirnnnnnnnemcnaeannnmnssnamanssssnsnns s 6-66
Moving Text 6-66

Fixing Typos 6-67
CoPYING T@XE.. . erncmmrmnearnnnnnanasnnmnsnmnnsnrnmansan arnnmnnea O-68
Copying or Moving Text ilsing Registers 6-69

EXERCISE 5 ...cnnivnrnreanennsannsnnnnsmsntansannnnanasnnnnsnnnsssnnssmssnansssnnssnnsnennnnnssnnsennsannsmannnnnn 6-70

SPECIAL COMMANDSoinuimnnsannnmannsnnamnasaisssnnansannsmssnmnnntsnasnsennsnnaannsmanensnnsmanssnsnsnn 6-71
Repeating the Last Commandc..coccmeeemncenmmmmmnnennsnnsnssannsannnnensnnnansssnsnnssessnnn 6-71
JOINING TWO LINES . inrccanccnnrennannnsnnnrnsannassasnsrssasnnmnanannnmesnsnssnnsnnnnssnsnsnnsnsnnmnennnn 6-72
Typing Nonprinting Charact@rs.cuuwciancccrenmmrnmmaesnnmnsmecsmansnnnsmasaasnennensnannnsann 6-72
Clearing and Redrawing the Window..........ccaercunann 6-73

Changing Lowercase to Uppercase and ViCe Versa.......cccceemmurmnannensennensmnnees 6-73

PAGE

LINE EDITING COMMARNDSocvnncrnnranmmnmmnmmnssssnssssncnssassnmnmnnsssassssassssssnsnnnnnnnnnn 5-74
Write Text £0 @ MeW Fil@crrccreccnnnnmnmnmnannnnsnasnnnnannonsnnnssnnnsssnsnasasmsnnsanmsnnnn 6-75
Finding the Line NUMBEF ... rrccrmcmnnssnsmssnnsansnnsnssnannnmmnns s smaansnnemmmsmsnssann 6-76
Deleting the Rest of the BuUff@rcccccmmmnmmnmnmmnmnnsnnnnssmansannnsansnnssnnnn . 677
Adding a File to the Buffer 6-77
Making Global Changes.ccccarmernrannnsnnsnnn 6-77

QUITTIMG VI ..oooecoronrmenmnnnn s nmenmanmmssnnnassnannsnnnnnnns pnne R n AR A n 6-80

SPECIAL OPTIONS FOR Wi cavnaannnsnnnsnnssnnnnsannnsnnsnnaansnsnnnsnmansssnsnssnansannssssssssnnnssnnnsnsss 6-82
Recovering a File Lost by an INT@ITUDEvnirannascensomscnnmnmnnnssnnnnnnssssasassnsnsnsnnsnnn 6-82
Editing Multiple FileS .ouvirnamncrneennnnmnnnmanmssnnsmnsmnssesssnnsnnnnsnnnnssnanansnnssssnnnnsnnnsnnen 6-83

EXERCISE B .orrnnrnrenrccrnenannmmnnmnsnrsnssncsas s nnmmnssms et mmmmnmmmmmmnnsnnsns sassnsnasmnasmnen s snns 6-84

CHANGING YOUR ENVIRONMENTooncenmemmmmrrnnsnnsmnsnmnamsasansssnsssnssnnsnanansmnnnsmnnnmnnn 6-85
Setting the Automatic Carriage RetUiM. .c.cecmmrmmrmnrrnrrmrrncaaneammnmrnssnsnnnnnnnsnaans 6-86

ANSWERS TO EXERCISES ..o ooernnennrnrmenmansmnmnemmnsmnsnsmnsnnnnmnsnnssansnnsnnnnsneenaannsnsnnsnn 5-88
EXEICISE T arrernnnnnnnnnnannnnnnnnsnnnnnnnsnsnssnansmssnansnnnnsnansnsoanannnnnsn s smnanssnnnmssmnmanemnennns 6-88
B g L= - e TP 6-89
EXEFCISE B oornrincnsnmcnsnnamnmnnsnnssnasnnnsansanmansmsnsnsnnnsmrnnsnnsmannmmmnn s snsnnnnansmnanmnanennnn 6-90
Exercise 4 ... 6-91

EXercise 5ccunnen . 6-92
LB Y oy =T < S ON 6-92

Chapter 6

SCREEN EDITOR TUTORIAL (vi)

GETTING ACQUAINTED WITH vi

The screen editor, accessed by the vi command, is a powerful and
sophisticated tool for creating and editing files. The video display
terminal is used as a window to view the text of a file. Within this
window, you can add, delete, or change text in much the same way as
you would on a typewriter or with paper and pencil. However,
making corrections in vi does not involve white out, correction tape,
or cutting and pasting. A few simple commands change the text, and
these changes are quickly reflected in the text on the screen.

The wi editor displays from 1 to several lines of text. The cursor can
be moved to any point on the screen and text can be created,
changed, or deleted from that point. The text in the file can be
scrolled forward to reveal the lines below the current window, the
window that is on the screen now. Or, the file can be scrolled
backward to reveal lines above the current window. (See the display
on page 6-2.) Other commands can place you at the beginning or end
of the file, paragraph, line, or word.

Besides the convenience of editing portions of text within the
window, wi also gives you the advantage of some line editor
commands, such as the powerful global commands that make the
same change throughout the whole file.

6-1

SCREEN EDITOR TUTORIAL. (vi)

TEXT FILE
You are in the screen editor.

This portion of the file is above
the display window. You can scroll
backward to place this part on the
screen.

This portion of the file
is in the display window.

This part of the file in
display window can be edited.

This is another part of the file
which is below the display window.

You can scroll the screen forward
to place this text in the
display window.

Editing window of vi displaying part of a file

HOW TO READ THIS TUTORIAL

This chapter is a tutorial on how to access and use vi. Although
there are more than 100 commands within vi, this tutorial covers
only the basic commands that will enable you to effectively use vi.
The following basics will be covered:

> How to set up your particular type of terminal so you can access
vi,

6-2

HOW TO READ THIS TUTORIAL

« How to get started creating a file, deleting some of your mistakes,
writing the text into a UNIX system file, and then leaving vi to
go back to the shell command mode,

= How to move around within the file, so that you can create,
delete, or change text,

- How to electronically cut and paste your text,
~ How to use some special commands and shortcuts,

»~ How to temporarily escape to the shell to perform some shell
commands and then return to edit the current window of text,

- How to use some line editing commands within vi,
«~ How to quit vi,
-~ How to edit several files in the same session,

» How to recover a file lost by an interruption to an editing
session, and

» How to change your shell environment to automatically set your
terminal configuration, and set an automatic carriage return.

In this tutorial, commands printed in beold should be typed into the
system exactly as shown. UNIX system responses to those commands
are printed in italic. The vi editor commands that do not print out on
the screen will be enclosed in <>. For example, <CR> denotes
carriage return, meaning press the RETURN key.

The wi editor has several commands executed by holding down the
"control" or CTRL key while you press another key. These are called
control characters. A " and a letter denote a control character in the
text. For example, "d means hold down the control key and press the
"d" key. Since "d is a command that does not appear on the screen, it
will appear in the text as <"d>, meaning you should execute vi
command <"d>. As you read the text you may want to glance back
for a quick review of these conventions, which are summarized next.

6-3

SCREEMN EDITOR TUTORIAL (vi)

-

bold command (Type in exactly as shown.)

italic response (The system’s response to a command.)
roman (Text that is being typed in

a file.)
<CR> (Commands that are typed in,

but not reflected on the screen
are enclosed in < >))

g (A control character. Hold down the
control key, CTRL, while you press "g".)

In the following sections, a full or partial screen may be used to
display the examples showing how the commands are executed. An
arrow will point to the letter that is over the cursor. Cursor
movements on the screen are depicted by arrows pointing in the
direction that the cursor will move.

The keys on your keyboard may be depicted as shown in the example
of the "m" key.

Notice that the letter on the key appears as it does on your keyboard.
However, when you press the key it will appear in lowercase in your
text. If you need an uppercase letter, the example will include the
SHIFT key.

The commands discussed in each section are reviewed at the end of
the section. A summary of all the wi commands is found in
Appendix E, where they are listed in alphabetical order, as well as by
topic.

6-4

GETTING STARTED

At the end of some sections, exercises are given for you to experiment
with those commands covered in the section. The answers to all of
the exercises are at the end of this chapter.

GETTING STARTED

The best way to learn vi is to log into the UNIX system and do the
examples and the exercises as you read the tutorial. If you
experiment with the commands. they will become familiar to you and
you will soon be adept at editing in vi.

You should be logged into the UNIX system, and ready to create a
file in your current directory, the directory you are in now.

How to Set Terminal Configquration

Before you access vi, you must set your terminal configuration. That
is, you must tell the system what kind of terminal will display the
editing window of your file. Each type of terminal has a code name
that can be recognized by the system. The code for your terminal is
in the UNIX system file /etc/termcap. The termcap file contains
information about different terminals. You only need to know the
code for your terminal, which is the first two letters of the line
containing information about your terminal.

To find the code for your type of terminal, use the grep command to
search the /etc/termcap file for your terminal type. For example, if
you have a TELETYPE 5420 terminal, type in the following from your
login directory:

$ grep "teletype 5420" /etc/termcap <CR>
T7 | 5420 | tty5420 | teletype 5420 80 columns:
$

6-5

SCREEN EDITOR TUTORIAL. (vi)

The code for a Teletype 5420 is T7.
To set the terminal configuration, type in:

TERM=code <CR>
export TERM <CR>

TERM must be typed in uppercase and there are no spaces on either
side of the equal sign. "code" will be the first two letters on the line
for your terminal from the termcap file. In this command sequence,
the export command assigns the terminal type to your login
environment for this session while you are logged in to the UNIX
System. You can learn more about exporting variables such as TERM
in Chapter 7, Shell Tutorial and in UNIX System Shell Commands and
Programming. (See Appendix A.)

In the example below, you have logged into the UNIX system and
have gotten your $ prompt from the system. Then, you set your
terminal configuration for the Teletype 5420.

$ TERM=T7<CR>
$ export TERM<CR>
$

Look up your terminal code in the termcap file, or ask your system
administrator for the code. If you set your terminal configuration
now, you can do the examples as you read the text.

Do not experiment typing in terminal configurations that do not
match your terminal, since you may confuse the UNIX system, and
you will either have to log off, hang up, or get the help of the system
administrator to restore your login environment.

Later in this chapter, you will learn how to set your shell
environment so that you do not have to set the terminal
configuration each time that you log in to the UNIX system.

6-6

GETTING STARTED

How to Access vi

Now you are ready to access vi.
Type in: i filename <CR>

where filename is the name of the file you wish to edit, or the name of
the file you are about to create.

After you have set your terminal configuration, you want to create a
file called stuff. For the purpose of this example, TERM is set to T7.

$ TERM=T7<CR>
$ export TERM<CR>
$ vi stuff <CR>

The vi command will clear the screen and display the window for the
screen editor. It should look like this:

4 N

“stuff" [new filel

N J

The vi editor window initially displays some lines of text. In this
example there are no lines of text. The screen editor displays a ~ on
each line to indicate the file is empty. The cursor is at the beginning

6-7

SCREEN EDITOR TUTORIAL (vi)

of the file waiting for the first command. In this example, the cursor
appears as a short line. Your video display terminal may indicate the
cursor by a blinking line or a reverse color block.

Problem:
If you access vi and get the following message you have forgotten to
set the terminal configuration.

$ vi stuff <CR>

I don’t know what kind of terminal you are on - all I have is unknown
[Using open model

"stuff" [New file]

Type in: :q<CR>

This returns you to the shell command mode, now you can set your
terminal configuration.

How to Create Text

If you have successfully accessed vi, you are in the command mode of
the screen editor, and vi is waiting for your commands. How do you
create some text?

= Press the "a" key, <a>. Now you are in the append mode of vi.
You can add text to the file. The a does not print out on the
screen.

a

Start typing in some text.

» To begin a new line press the carriage return key <CR>.

« Notice as you get close to the right margin a bell sounds to
remind you to press the carriage return. Terminals which do not

have a bell, may warn you another way, such as flashing the
screen.

6-8

GETTING STARTED

It is possible to set the carriage return so that it is automatic; this is
discussed later in this chapter in the section on changing your
environment.

How to Leave the Append Mode

If you are finished creating text, you need to leave the append mode
and return to the command mode of vi to edit any text you have
created, or to write the text into a UNIX system file. Press the escape
key, ESC or DEL, denoted by <ESC>. You are now back in the
command mode.

- N

<a>

Create some text <CR>

in the screen editor <CR>
and return to the <CR>
command mode. <ESC>

N J

Problem:

If you press <ESC> and a bell sounds, vi is telling you that you are
already in command mode. It will not affect the text in the file if you
press <ESC> several times. The vi editor will only sound a bell
each time that you press <ESC>.

6-9

SCREEN EDITOR TUTORIAL (vi)

How to Move the Cursor

To edit your text, you need to move the cursor to the point on the
screen where you will begin the correction. This is easily done with
four keys that are next to each other on the keyboard, "h, ji- k, 1

<h> Moves the cursor one character to the left.
<j> Moves the cursor down one line.
<k> Moves the cursor up one line.
<1> Moves the cursor to the right one character.
k
h = — —_—]

. /

Right now try moving the cursor around. Watch the cursor on the
screen while you press the keys <h>, <j>, <k>, and <I1>. If you
want to move two spaces to the right, press <1> twice. If you want
to move up four lines, press <k> four times. If you cannot go any
farther in the direction you have indicated, vi will sound a bell.

6-10

GETTING STARTED

Many people who use vi find it helpful to mark these four keys with
arrows indicating the direction that each key moves the cursor. Mark
an arrow on each of four small pieces of white correction tape and

"y

place a left arrow on the front of the "h" key, a down arrow on the "
key, an up arrow on the "k" key, and a right arrow on the "" key.

Some terminals have special cursor control keys that are marked with
arrows. These may be used as "h, j, k, and 1" keys are used.

Problem:

If you are trying to move the cursor around on the screen and the
letters h, j, k, and 1 print out on the screen, you are still in the
append mode of vi. Press <ESC>. Most of the commands in the
screen editor are silent, that is they do not print out. If the screen
editor commands are printing out on the screen you are still in
append mode. Press <ESC> and try the commands again.

6-11

SCREEN EDITOR TUTORIAL. (i)

How to Delete Text

If you have put in an extra character in the text, you will want to
delete that character. Move the cursor to that character, and press the
"x" key. Watch the screen. The letter will disappear and the line will
readjust to the change. If you want to erase three letters in a row,
press <x> three times. In the examples below, the position of cursor
is depicted by the arrow under the letter.

Hello Wurld!

T

Press X

Hello Wrld!

T

6-12

GETTING STARTED

How to Add Text

If you need to add text at a certain point in the text that is in the
window, move the cursor to that point using <h>, <j>, <k>, and
<1>. Then, press <a> and text will be created after that point. As
you append text, the characters to the right will move over on the
screen to make room for the new characters. The vi editor will
continue adding all characters that you type in, until you press
<ESC>. If necessary the characters to the right will even wrap
around onto the next line.

Hello Wrld!

T

Press @ then m

Hello World!

!

Press ESC

Moving around on the screen, or scrolling through the file to add or
delete characters, words, or lines, is discussed in detail later in this
tutorial.

6-13

SCREEN EDITOR TUTORIAL (vi)

How to Quit vi

The vi command creates a temporary buffer for you. This is
equivalent to giving you a piece of scratch paper. When the text or
data on the scratch pad is in the form you want for this editing
session, you must write it to a UNIX system file. If you are done
editing your test file, you will want to put this file in a file called stuff
in the current directory and get back into the shell command mode.

Hold down the SHIFT key and press the "z" key twice, <ZZ>. The
vi editor remembers the file name given to the vi command at the
beginning of the editing session, and moves the text from the buffer
of the editor to the file named stuff. You will get a notice at the
bottom of the screen giving the file name, and the number of lines
and characters in the file. Then, you are returned to the shell
command level, and the UNIX system displays the shell prompt $.
Since stuff is a new file, the notice at the bottom of the screen will
include this fact.

4)

<a>

This is a test file. <CR>

I am adding text to <CR>

a temporary buffer and <CR>

now it is perfect. <CR>

I want to write this file, <CR>

and return to the shell command <CR>
mode. <ESC> <ZZ>

"stuff" [New file] 6 lines, 151 characters

$

EXERCISE 1

SUMMARY OF GETTING STARTED

TERM=code
export=TERM Set the terminal configuration.
vi filename Enter vi editor to edit the file called filename.
<a> Add text after the cursor.
<h> Move one character to the left.
<j> Move down one line.
<k> Move up one line.
<> Move to the right one character.
<x> Delete a character.
<CR> Carriage return.
<ESC> Leave the append mode, and return to vi
command mode.
<ZZ> Write to a file, and quit vi.
:q Quit vi.
EXERCISE 1

There is often more than one way to perform a task in vi. If the way
you tried worked, then your answer is correct. Watch the screen as

you give the commands, and see how it changes or how the cursor
moves.

The answers to the exercises are at the end of this chapter.

1-1. If you have not logged in yet, do so now, and set your terminal
configuration.

6-15

SCREEN EDITOR TUTORIAL. (vi)

1-2. Enter vi and append the following five lines of text to a new
file called exerl.

This is an exercise!
Up, down

left, right,

build your terminal’s
muscles bit by bit.

1-3. Move the cursor to the first line of the file and the seventh
character from the right. Notice as you move up the file, the
cursor moves "in" to the last letter of the file, but it does not
move "out" to the last letter of the next line.

1-4. Delete the seventh and eighth character from the right.

1-5. Move the cursor to the last line of the text, and the last
character of that line.

1-6. Append a new line of text.
and byte by byte
1-7. Write the buffer to a file and quit vi.
1-8. Reenter vi and append two more lines of text to the file exerl.

What does the notice at the bottom of the screen say once you
have reentered vi to edit exerl?

POSITIONING THE CURSOR IN THE WINDOW

Until now you have been positioning the cursor with the keys "h, j, k
and, 1". However, there are several commands to help you move the
cursor quickly around the window.

This section on positioning the cursor in the window will lock at:

-~ Positioning by characters on a line,

6-16

POSITIONING THE CURSOR IN THE WINDOW

» Positioning by lines,

« Positioning by text objects
— By words,
— By sentences, and
— By paragraphs, and

~ Positioning in the window.

There are also several commands that position the cursor within the
vi editing buffer. These commands will be looked at in the next
section, Positioning in the File.

The wvi editor provides two very helpful patterns in cursor movement.

- Instead of pressing a key such as "h" or "k" a certain number of
times, you can precede the command with that number. For
example, <7h> moves the cursor seven characters to the left.

» Many lowercase commands have an uppercase equivalent that
will slightly modify or enhance the command. For example,
<a> appends text after the cursor, but <A> appends text after
the last character at the end of the line.

The uppercase commands will be mentioned briefly in the text,
and will be defined in the summary. As you try out the
lowercase commands, experiment with the uppercase commands
and see what they can do.

If you have not logged into the UNIX system and have not accessed
vi to edit a file, please do so now. You will want a file that has at
least 40 lines in it. If you do not have one, create one now, because
you will want to try out each of these cursor movements as you read
this section of the tutorial. Remember, to execute these commands,
you must be in the command mode of vi. Press <ESC> to make
sure you are out of the append mode, and are in the command mode
of vi.

SCREEN EDITOR TUTORIAL. (vi)

Character Positioning

There are three ways to position the cursor by a character on a line.
» You can move the cursor right or left to a character,
- You can specify the character at either end of the line, or

» You can search for a character on a line.

Positioning the Cursor to the Right or Left
The commands, <h>, <1>, the space bar, and the BACK SPACE key

move the cursor right or left to a character on the current line.

You are already familiar with the "h" and "1" keys.

m ——— Move the cursor to the left.

<h> =— Move the cursor one character to the left.
<nh> Move the cursor "n" characters to the left.
L ————= Move the curser to the right.

N\

<> —= Move the cursor one character to the right.

<nl> Move the cursor "n" characters to the right.

6-18

POSITIONING THE CURSOR IN THE WINDOW

Try typing in a number before the command key. Notice that the
cursor moves the specified number of characters to the left or right.
In the example below, the cursor movement is depicted by the
arrows.

To quickly move the cursor
left or right on the screen,
prefix a number to the command.
Move the cursor left 7 spaces.
P <7h>

Move the cursor right three spaces.
<31>—

Even if there are not 100 characters in a line, if you type in <1001>,
the cursor will simply travel to the end of the line. If you type in
<100h> the cursor will travel to the beginning of the line.

By now, you have probably accidentally discovered that you can
move the cursor back and forth on a line using the space bar and the
BACK SPACE key.

—3» Space bar
moves one

space to the

\ right

<space bar> —> Move the cursor one character to the
right.

<nspace bar> Move the cursor "n" characters to the right.

6-19

SCREEN EDITOR TUTORIAL (vi)

BACK
SPACE Move the cursor ome character to the left.
<BS> "I'T Move the cursor one character to the
eft.
<nBS> Move the cursor "n" characters to the left.

You can type in a number before the space bar or <BS>. The cursor
will move that many characters to the left or right.

Positioning the Cursor al the End or Beginning of a Line

The second method of positioning the cursor on the line is shown
below. These commands will place you at the first character or last
character of a line.

Position the cursor om the last character of
the line.

The number zero positions the cursor on the
first character of the line.

The carat key positions the cursor on the first
A character of the line that is nmot a blank.
(This is not a control character.)

6-20

POSITIONING THE CURSOR IN THE WINDOW

The next examples show the movement of the cursor for each of the
three commands.

Go to the back of the line!
e

<$>

-

Go to the front of the line!
e

<0> (The number zero)

Go to the first character
of the line that

is not blank!
=

<">

Searching for a Character on a Line

The third way to position the cursor on a line is to search for a
specific character on the current line. If the character is not on the
current line, a bell will sound and the cursor will not move. There is
a command that will search the file for patterns. It is discussed in the
next section of this tutorial.

6-21

SCREEN EDITOR TUTORIAL (vi)

Moves the cursor to the right
to find the specified letter
on the current line.

<fx> —=> Move the cursor to the right to
the specified character x.

<Fx> =— Move the cursor to the left to the
specified character x.

<;> The <;> will continue the search. It will
remember the character and seek out the next
occurrence of that character on the current
line.

In the next example, vi is searching to the right for the first
occurrence of the letter "A" on the current line.

Go forward to the letter A on this line.

.

<fA>

You may also find the <tx> command useful.

<tx> —> Move the cursor to the right, to the
character just before the specified
character x.

<Tx> ~— Move the cursor left to the character
just after the specified character x.

Try the search commands on one of your files. Notice the difference
between the uppercase and lowercase commands.

6-22

POSITIONING THE CURSOR IN THE WINDOW

Line Positioning

Besides the <j> and <k> commands that you have already used,
the "+", "—" and RETURN keys will move the cursor line by line. The
cursor will try to remain at the same position on the line. If the
cursor is on the seventh character from the left in the current line, it
will try to go to the seventh character on the new line. If there is no
seventh character, the cursor will move to the last character.

\L Move the cursor down one line.

K T Move the cursor up on line.
Since you have already tried out <j> and <k> and know how they
react, try adding a number of lines to the command as you did with
<h> and <1>.
Type in: 7k
The cursor will move up seven lines above the current line. If there
are not seven lines above the current line, a bell will sound and the
cursor will remain on the current line.
Type in: 35j
The screen will clear and redraw. The cursor will be on the 35th line
below the current line. The new line will be located in the middle of
the new window. If there are not 35 lines below the current line, the
bell will sound and the cursor will remain on the current line. Try
the following command.
Type in: 35k

Did the screen clear and redraw?

6-23

SCREEN EDITOR TUTORIAL (vi)

Now, try out the following three easy ways to move up or down in
the file.

’T The minus sign moves the
cursor up a line.

Type in: 13—

The cursor will travel up 13 lines. If some of those 13 lines are above
the current window, the window will move up to reveal those lines.
This is a rapid way to move quickly up the file. Try the following
command.

Type in: 100—
What happened to the window? If there are less then 100 lines above

the current line, a bell will sound telling you that you have made a
mistake, and the cursor will remain on the current line.

+ or RETURN Move the cursor
\L down a line.

Now, try moving down the lines of the file with +.

Type in: 9+

The cursor will move down nine lines below the current line.
Try moving down line by line in the file with the RETURN key.
Type in: B<CR>

Did the RETURN key give the same response as the "+" key?

6-24

POSITIOMIMG THE CURSOR IN THE WINDOW

Word Positioning

The vi editor considers a word a string of characters that are either
numbers or letters. The word positioning commands, <w>, ,
and <e>, consider that any other character is a delimiter, telling vi
it is the beginning or end of a word. Punctuation before or after a
blank is considered a word. The beginning or end of a line is also a
delimiter.

The uppercase word positioning commands, <W>, , and <E>,
consider that the punctuation is part of the word and define a word
by all the characters within two blank spaces, that is, the word is
delimited by blanks.

W Move the cursor te the right by words.

<w> Move the cursor forward to the first character in the
next word. You may press the "w" key as many times
as you wish to reach the word you want, or you can
prefix the number to the <w> command as shown
below.

<nw> Move the cursor forward "n" number of words to the
first character of that word. The end of the line does
not stop the movement of the cursor, it will wrap
around and continue to count words from the
beginning of the next line.

<W> Ignore all punctuation, and move the cursor forward
to the word after the next blank.

6-25

SCREEN EDITOR TUTORIAL (vi)

<nb>

The w command

leaps word by word through the

file. Move from this word forward
<bw> ————>——

six words to this word.

Move the cursor backwards, to the left,
by words.

Move the cursor backward one word to the first
character of that word.

Move the cursor backward "n" number of words to
the first character of the nth word. The
command does not stop at the beginning of a line,
but moves to the end of the line above and continues
to move backward.

Can be used just like the command, except that
it delimits the word only by blank spaces. It treats
all other punctuation as letters of a word.

6-26

Leap backward word by word through
the file. Go back four words from here.

<4b>

POSITIONING THE CURSOR IN THE WINDOW

E Move forward to the end of the word.

The <e> command acts like <w> moving forward in the file by
words, except that it moves the cursor to the end of the word. This

makes it easy to add punctuation or add "s" to the end of a word.

The <E> command ignores all punctuation except blanks, delimiting
the words only by blanks.

Go forward one word to the end of
the next word in this line
<e> ——

Go to the end of the third word.
<3e> s>

Positioning the Cursor by Sentences

The wi editor also recognizes sentences. In vi, a sentence ends in
"t or . or ?". If they appear in the middle of a line, they must be
followed by two blanks spaces for vi to recognize them. You should
get used to the vi convention of putting two spaces at the end of each
sentence, because you can also delete, change, or yank whole
sentences, which will be discussed later in this tutorial.

(Move the cursor to the beginning
of a sentence.

6-27

SCREEN EDITOR TUTORIAL (vi)

< (>

< n{ >

<)}>

< n) >

Move the cursor to the beginning
of the next sentence.

Move the cursor to the beginning of the current
sentence.

Move the cursor to the beginning of the "nth"
sentence above the current sentence.

Move the cursor to the beginning of the next
sentence.

Move the cursor to the beginning of the "nth"
sentence below the current sentence.

In the next example, the arrows show the movement of the cursor.

This sentence ends in the middle of
a line. Followed by two blank spaces.

=

<{>

You can go to the end of a sentence.
<)>

Now, precede the command with a number.

Type in: 3(

or B5)

Did the cursor move the correct number of sentences?

6-28

POSITIONING THE CURSOR IN THE WINDOW

Positioning the Cursor by Paragraphs

Paragraphs are recognized by vi if they begin after a blank line, or
after the paragraph formatting command .P. If you want to be able
to move the cursor to the beginning of a paragraph (or later in this
tutorial, delete or change a whole paragraph), then make sure each
paragraph ends in a blank line.

< {>

<n{>

<}>

< n} >

Move the cursor to the beginning
of the curremt paragraph.

Move the cursor o the beginning
of the next paragraph.

Move the cursor to the beginning of the current
paragraph, which is delimited by a blank line above
it.

Move the cursor to the beginning of the paragraph,

n" number of paragraphs above the current
paragraph.

Move the cursor to the beginning of the next
paragraph.

Move the cursor to the "nth" paragraph below the
current line.

The next example uses arrows to show the cursor moving down to
the beginning of the paragraph.

6-29

SCREEN EDITOR TUTORIAL (vi)

The end of a paragraph is
a blank line.

This is a new paragraph.
It also ends in a blank

line. <}>
Go to the beginning
of the next paragraph.

This is the third paragraph.

Try moving the cursor with the following commands.

Type in: {
34
6}

Did you have enough blank lines in your file to test out the last two
commands?

Positioning in the Window

The next three commands help you quickly position yourself in the
window. Try out each of the commands.

SHIFTI\ H Move the cursor to the first line

on the screen.

6-30

POSITIONING THE CURSOR IN THE WINDOW

SHIFT M

on the screemn.

N\

SHIFT L Move the cursor to the last line

on the screen.

This is the text of the file
above the current window.

This is the first line of the screen: HOME

<H>

This is the MIDDLE line of the screen
<M>

This is the LAST line of the screen

<L>

This is the portion of text
in the file that is below the
current window.

Meove the cursor to the middle line

6-31

SCREEN EDITOR TUTORIAL (vi)

SUMMARY OF POSITIONING IN THE WINDOW

Character Positioning Commands

<h>

<>

<BS5>

<space bar>

<fx>

<FEx>

<>

<{x>

<Tx>

Positioning by Lines

<j>

6-32

-——

Move the cursor one character to the
left.

Move the cursor one character to the
right.

Move the cursor one character to the
left.

Move the cursor one character to the
right.

Move the cursor to the right to
the specified character x.

Move the cursor to the left to the
specified character x.

Continue the search. It will remember
the character and seek out the next
occurrence of the character on the
current line.

Move the cursor to the right, to
the character just before the
specified character x.

Move the cursor left to the
character just after the specified
character x.

Move the cursor down one line in the same
column, if possible.

(Continued on next page)

POSITIONING THE CURSOR IN THE WINDOW

SUMMARY OF POSITIONING IN THE WINDOW (continued)

<k>

<L —=>
<+>

<CR>

Word Positioning

<w>

<W>

<e>

<E>

Move the cursor up one line in the same
column, if possible.

Move the cursor up one line.
Move the cursor down one line.

Move the cursor down one line.

Move the cursor forward to the first
character in the next word.

Ignore all punctuation, and move the cursor
forward to the next word delimited
only by blanks.

Move the cursor backward one word to the
first character of that word.

Move the cursor to the left one word,
which is delimited only by blanks.

Move the cursor to the end of the
current word.

Delimit the words by blanks only. The
cursor is placed on the last character

before the next blank space, or end of
the line.

(Continued on next page)

6-33

SCREEN EDRITOR TUTORIAL (vi)

SUMMARY OF POSITIONING IN THE WINDOW (continued)

Positioning by Sentences

< (>

<) >

Move the cursor to
current sentence.

Move the cursor to
next sentence.

Positioning by Paragraphs

<{>

<}>

Move the cursor to
current paragraph.

Move the cursor to
next paragraph.

Positioning in the Window

<H>

<M>

<L>

Move the cursor to
screen, or "home".

Move the cursor to
screen.

Move the cursor to
screen.

the beginning of the

the beginning of the

the beginning of the

the beginning of the

the first line on the

the middle line on the

the last line on the

POSITIONING THE CURSOR IN THE FILE

How do you move the cursor to text that is not in the current editing

window?

You can type in the commands <20j> or <20k>.

However, if you are editing a large file, you need to move quickly

6-34

POSITIONING THE CURSOR IN THE FILE
and accurately to another place in the file. This section covers those
commands that help you move around within the file. You can:

= Scroll forward or backward in a file,
« Go to a specified line in the file, or

= Search for a pattern in the file.

Scrolling the Text

Four basic commands scroll the text of the file. <"f> and <"d>
scroll the screen forward. <"b> and < u> scroll the screen
backward.

CTRL F

O

<"f> Scroll the text forward one full window, revealing
the window of text below the current window.

To scroll the file forward, vi clears the screen and redraws the
window. The last two lines that were at the bottom of the current
window are placed at the top of the new window. If there are not
enough lines left in the file to fill the window, the screen will display
the ~ to indicate the empty lines.

6-35

SCREEN EDITOR TUTORIAL (vi)

Type in:

These last two lines of the current window

become the first two lines of the new window

/

This part of the file
is below the display
window.

You can scroll forward
to place this text in the

display window.
N O

[CTRL ['

NN

vi clears the screen and redraws the new screen shown next.

6-36

POSITIONING THE CURSOR IN THE FILE

/ These last two lines of the current window \
become the first two lines of the new window

This part of the file
is below the display
window.

You can scroll forward

to place this text in the
display window.

_ j

Scroll down a half screen
CTRL D to reveal lines below the window.

<"d> Scroll down a half screen to reveal text below the
window.

When you use <"d>, it seems as if the text is being rolled up at the
top and unrolling at the bottom to allow the lines below the screen to
appear on the screen, while the lines at the top of the screen
disappear. If there are not enough lines in the file, a bell will sound
indicating there are no more lines.

6-37

SCREEN EDITOR TUTORIAL (vi)

CTRL B

<"b> Scroll the screen back a full window to reveal the
text above the current window.

The <"b> command clears the screen and redraws the window with
the text that is above the current screen. Unlike the <"f> command,
<"b> does not leave any reference lines from the previous window.
Also, it does not use the ~ to indicate space above the top of the file.
If there are not enough lines above the current window to fill a full
new window, a bell will sound and the current window will remain
on the screen.

Gﬁs part of the file / ()

is above the display
window.

You can scroll backward
to place this text in the
display window.

Any text in this display window
will be placed below the current
window.

The current window clears and is
redrawn with the text above the window.

6-38

POSITIONING THE CURSOR IN THE FILE

Type in:

CTRL B

vi clears the screen and redraws the new screen shown next.

~

This part of the file
is above the display window.

You can scroll backward
to place this text in the
display window.

Any text in this display window

will be placed below the current
window.

The current window clears and is
redrawn with the text above the window.

Any text that was in the display window is placed below the current
window.

CTRL U §croll up a half screen to reveal
lines above the window.

< u> Scroll up a half window of text to reveal the lines
just above the window. At the same time, the lines at
the bottom of the window will be erased.

6-39

SCREEN EDITOR TUTORIAL (vi)

When you use <"u>>, it appears as though the text in the file is on a
scroll that is being unwound at the top and wound up at the bottom
of the screen.

When the cursor is near the top of the file, it will move to the first
line of the file and then sound a bell, alerting you it cannot scroll any
farther. Try the <"u> and <"d> commands now. Watch the file
scroll through the window.

Go to a Specified Line

The <G> command will position the cursor on a specified line in
the window, or it will clear the screen and redraw the window
around that line. If you do not specify a line, <G> will go to the
last line of the file.

SHIFT G Go to a line.

NN

<G> Go to the last line of the file.

<nG> Go to the "nth" line of the file.

Line Numbers

Each line of the file has a line number, that corresponds to the
number of lines in the buffer. How can you find out the line
numbers? There are two basic ways. One way is to use a line editor
command, which you will learn about in the section on the line
editor commands. The other way is to position the cursor on the line
and type in a <"g> command. Try the <"g> command now.

6-40

POSITIONING THE CURSOR IN THE FILE
The <"g> command will give you a status notice at the bottom of
the screen. The notice tells you:
— Name of the file,
— If the line has been changed [modified],
— Line number,
— Number of the last line in the file, and

— Percent the current line is of the total lines in the buffer.

This line is the 35th line of the buffer.
The cursor is on this line,

<"g>

There are several more lines in the
buffer.
The last line of the buffer is line 116.

K "file.name" [modified] line 36 of 116 --34%--

Search for a Patiern of Characters

The fastest way to reach a specific place in your text is to use one of
the search commands. You can search forward or backward for the
first occurrence of a specified pattern of characters or words in the
buffer. The search pattern is ended by <CR>.

6-41

SCREEN EDITOR TUTORIAL (vi)

The search commands, / and 7, are not silent. They will print out on
the bottom of the screen along with the search pattern. However, the
command to repeat the search <n> is silent, it does not print out on
the bottom of the screen.

Search forward im the buffer.

~ / e]

Search backward in the buffer.

d
A

N Repeat the previous search.

/pattern <CR>
Search forward in the buffer for the next occurrence
of the characters patterm. Position the cursor on the
first character of the pattern.

/Hello world<CR>

Find the next occurrence in the buffer of the two
words Hello world. Position the cursor under the H.

?pattern <CR>
Search backward in the buffer for the first occurrence

of the pattern. Position the cursor under the first
character of the pattern.

6-42

POSITIONING THE CURSOR IN THE FILE

?data set design <CR>

Search backward in the buffer until the first
occurrence of data set desigm. Position the cursor
under the "d" of data.

<n> Repeat the last search command.

<N> Repeat the search command in the opposite direction.

The search commands will not wrap around the end of the line in
searching for two words. If you are searching for "Hello world", and
"Hello" is at the end of one line, and "world" is at the beginning of
another line, the search commands will not find that occurrence of
"Hello world". However, the search commands will wrap around the
end or the beginning of the buffer to continue the search. For
example, if you are toward the end of the buffer, and the pattern you
are searching for with the / command is at the top of the buffer, /
will find that pattern.

The <n> command continues the last search, remembering the
pattern and direction of the search.

The following example shows the results of first typing in ?the and
then typing in <m>.

Search backward for the character
pattern "the".

Notice that "Ehere" also qualifies

for the search.
] ‘ <n>

2the

.

6-43

SCREEN EDITOR TUTORIAL (vi)

Experiment for a minute. What happens if you try to type in a
number before ? or / or <n>? Experiment with commands in a file
called junk. If you tried to type in a number before [or ?, vou found
out it does not work. However, if you iried to type in <7a>, you
found out that it searched for the seventh identical pattern.

SUMMARY OF POSITIONING IN THE FILE

Scrolling

<"f> Scroll the screen forward a full window, revealing the
window of text below the current window.

<"d> Scroll the screen down a half window, revealing lines
below the current window.

<"b> Scroll the screen back a full window, revealing the
window of text above the current window.

<"u> Scroll the screen up a half window, revealing the lines

of text above the current window.

Positioning on a Numbered Line
<G> Go to the last line of the file.

<"g> Give the line number and status.

Searching for a Pattern

/pattern Search forward in the buffer for the next occurrence of the
pattern. Position the cursor on the first character of the
pattern.

(Continued on next page)

6-44

EXERCISE 2

SUMMARY OF POSITIONING IN THE FILE (continued)

?pattern Search backward in the buffer for the first occurrence of
the pattern. Position the cursor under the first character
of the pattern.

<n> Repeat the last search command.
<N> Repeat the search command in the opposite direction.
EXERCISE 2
2-1. Create a file called exer2. Type a number on each line,

2-2.

numbering the lines from 1 to 50. Your files should look
similar to the following.

(6, BTN EV I A

45
46
47
48
- 49
50

Try using each of the scroll commands, notice how many lines
scroll through the window. Try the following:

<"f>
<"b>
<"u>
<"d>

6-45

SCREEN EDITOR TUTORIAL (vi)

2-3. Go to the end of the file. Append the following line of text.
123456789 123456789

What number does the command 7h place the cursor on? What
number does the command 3] place the cursor on?

2-4. Try the command $ and the command 0 (number zero)

2-5. Go to the first character on the line that is not a blank. Move
to the first character in the next word. Move back to the first
character of the word to the left. Move to the end of the word.

2-6. Go to the first line of the file. Try the commands that place the
cursor on the middle of the window, on the last line of the

window, and on the first line of the window.

2-7. Search for the number 8. Find the next occurrence of number
8. Find 48.

CREATING TEXT

There are three basic commands for creating text:
» Append command <a>,
« Insert command <i>, and

- Open command that creates text on a new line <o>.

After you finish creating text with any one of these commands, you
can return to the command mode of vi with the <ESC> command.

ESC The ESC key ends the text
input mode.

6-46

CREATING TEXT

Append Text

A Append text.
<a> Create text to the right of the cursor, or after the
Cursor.
<A> Append text at the end of the current line.

You have already experimented with the <a> command in the
section on Getting Started. Make a new file named junk2. Append
some text using the <a> command. Escape or return to the
command mode of vi by pressing the ESC key. Then, compare the
<a> command with the <A> command.

insert Text
Insert text.
<i> Insert text to the left of the cursor, or before the
cursor.
<I> Create text at the beginning of the current line before

the first character that is not a blank.

In the example below, the arrow shows where the new text will be
created.

6-47

SCREEN EDITOR TUTORIAL (vi)

Insert before the H of Here.

Insert before the H of (—> Here.

<i>

Press ESC

To end the insert mode and return to the commmand mode of vi, press
the "ESC" key. In the next example you can compare the append
command with the insert command.

Append after the H of Here.
Append after the H of H (> ere.

<a>
Insert before the H of Here.
Insert before the H of (—>Here.

<i>

Remember to end the append mode and the insert mode with the
<ESC> command.

6-48

CREATING TEXT

Create a new line of text.

<o> The open command <o> creates text at the
beginning of a new line below the current line. The
cursor can be on any character in the current line.

<O0> To create text at the beginning of a new line above
the current line, use the <O> command.

In the next screen the <o0> command opens a new line below the
current line and begins creating text at the beginning of the new
line.

- "

Create text with the open line command.

Create text below J the current line.

6-49

SCREEN EDITOR TUTORIAL (vi)

SUMMARY OF CREATE COMMANDS

<a>

<A>

<i>

<I>

<o>

<O>

<ESC>

Create text after the cursor.
Create text at the end of the current line.
Create text in front of the cursor.

Create text before the first character on the current line
that is not a blank.

Create text at the beginning of a new line below the
current line.

Create text at the beginning of a new line above the
current line.

Return vi to the command mode from any of the above
text input modes.

3-2.

3-3.

EXERCISE 3

Create a test file exer3.

Insert the following four lines of text.

Append text
Insert text

a computer’s
job is boring.

Create a line of text

financial statement and

above the last line.

Create a line of text

Delete text

above the third line using an insert command.

6-50

3-5.

3-6.

3-7.

3-8.

DELETING TEXT

Create a line of text
byte of the budget
below the current line.
Using an append command create a line of text
But, it is an exciting machine.
below the last line.
Move to the first line and append "some" before "text".

Now, practice each of the six commands for creating text until
you are familiar with using them.

Leave vi and go on to the next section to find out how to
delete any mistakes you made in creating text.

DELETING TEXT

You can delete text from the text input mode or the command mode

of wvi.

In addition, you can undo the effect of your most recent

command that changed the buffer.

Delete Commands in the Text input Mode

To delete text in the text input mode, you will use <BS>.

<B5> Delete the current character, the character indicated

by the cursor.

BACK

SPACE Delete a character in the create

mode of vi.

6-51

SCREEN EDITOR TUTORIAL (vi)

The BACK SPACE key <BS> backs up the cursor in the create mode
and deletes each character that the cursor backs across. However, the
deleted characters are not erased from the screen until you type over
them, or use <ESC> and return to the command mode of vi.

In the next examples, the arrows show the movement of the cursor.

BACK

Press SPACE three times.

<a>
Back space 3 spaces

%.

Press ESC

<a>
Back space 3 spa

-

6-52

DELETING TEXT

Notice that the characters do not erase from the screen until you
press the ESC key.

There are two other commands that delete text in the text input
mode. Although you may not use them often, you want to be aware
that they are commands in the text input mode and need a special
command to type them into your text, see the section on special
commands.

<"w> Delete the current word, or a specified portion of the
word from the cursor to the end of the word.

<@> Delete all of the portion of the line that is currently
being created.

Undo the Last Command

Before you experiment with the commands that can delete a good
portion of your text, you will want to try out the "undo" command,
which will undo the last command.

U Undo the last command.
<> Undo the last command.
<U> Erase the last change on the current line.

If you deleted a line, <u> will bring it back on the screen. If you
hit the wrong command, <u> will undo that command.

If you press the "u" key twice, it will undo the "undo". That is, if you
delete a line, the first <u> will restore the line. If you press <u>
again, it will delete the line again.

6-53

SCREEN EDITOR TUTORIAL (vi)

Delete Commands in the Command Mode

You know that you can precede a number before the command.
Many of the commands in vi, such as the delete and change
commands, allow an argument after the command. The argument can
specify a text object such as a word, or a line, or a sentence, or a
paragraph. The general form of a vi command is:

[number]commandfargument]

The brackets around objects in the general form of the command line
denote optional parts of the command. They are not part of the
command line.

You will see many examples of this form for the delete and change
commands.

All of the delete commands in the command mode of vi immediately
remove the deleted text from the screen and redraw that part of the
screen.

X Delete a character.
<x> Delete one character.
<nx> Delete "n" characters, where n is the number of

characters you want to delete.

You used <x> in the Getting Started section of this chapter. Now try
preceding <x> with the number of characters you want to delete.

6-54

DELETING TEXT

Tomorrow the Loch Ness monster
shall slither forth from the
deep dark ﬁeep depths of the lake.

Put the cursor on the first letter you want to delete, in this example
the "d" of the second "deep".

Type in: 5x

The screen will delete "deep”, plus the extra space, and readjust the
text on the screen so that it will now read:

Tomorrow the Loch Ness monster
shall slither forth from the
deep dark ?epths of the lake.

You can also use the delete word command, which is discussed next.

Delete Texi Objecis

The delete command follows the general form of a vi command.

[number]dftext object]

6-55

SCREEN EDITOR TUTORIAL. (vi)

D Delete a word, a line, a
sentence, or a paragraph.

D W Delete a word.
NN\

You can delete all of a word or part of a word with <dw> by
moving the cursor to the first character you want deleted. Pressing
<dw> deletes that character and all characters up to and including
the next space or punctuation character.

To delete part of thisill word.

T

Type in: dw

To delete part of thisword.

T

You can delete one word with <dw> or several words by prefixing
the "dw" with a number. The cursor must be on the first character of
the first word to be deleted. To delete five words, you would type in
5dw. An example of how to do this follows.

6-56

DELETING TEXT

The quick red fox jumped over
the lazy black turtle or an ox

(o J

Type in: 5dw

The quick red fox jumped over
the lazy

Try typing in the arguments for other text objects that you learned in
the section on positioning the cursor.

Typein: d(or d}

Observe what happens to your file. Remember, you can restore the
text that you just deleted with <u>.

D D <dd> Delete a line of text.

To delete a line, press the "d" key twice. You do not need to worry
about deleting text if you press the "d" key once. Nothing will

6-57

SCREEN EDITOR TUTORIAL (vi)

happen, unless you press the space bar. The <d space bar> acts like
the <x> command and deletes one character. If you accidentally
press "d" key in the command mode, press the ESC key. The ESC key
will cancel the previous typed command.

Try to delete ten lines.

Type in: 10dd

The lines will be deleted from the screen. If some of the lines are
below the current window, vi will display a notice on the bottom of
the screen:

10 lines deleted

If there are not ten lines below the current line in the file, a bell will
sound and no lines will be deleted.

SHIFT D Delete ffhe line from the cursor to the end
of the line.

If you are erasing the end of a line, use the <D> command. Put the
cursor on the first character to be deleted, hold down the SHIFT key
while you press the "d" key.

Type in: D
The <D> command will not allow you to specify more than the
current line. You cannot type in "3D". However, you could type in

<3d$>. Remember the general form of a vi command? The $ refers
to the end of the line in vi.

6-58

DELETING TEXT

SUMMARY OF DELETE COMMANDS

For the CREATE Mode:

<BS>
<"h>
< "W>

<@>

Delete the current character.
Delete the current character.
Delete the current word.

Delete the current line of new text, or delete all new
text on the current line.

For the COMMAND Mode:

<u>

<U>

<x>
<ndx>

<dw>

<dd>
<D>
<d)>

<d}>

Undo the last command.

Erase the last change on the current line.
Delete the current character.

Delete "n" number of text objects "x".

Delete the word at cursor through the next space or to
the next punctuation mark.

Delete the current line.
Delete the line at the cursor to the end of the line.
Delete the current sentence.

Delete the current paragraph.

6-59

SCREEN EDITOR TUTORIAL (vi)

EXERCISE 4

4-1. Create a file exer4 containing the following four lines:
When in the course of human events
there are many repetitive, boring
chores, then one ought to get a
robot to perform those chores.
4-2. Move the cursor to line 2 and append to the end of that line:
tedious and unsavory.
Delete "unsavory” while in the append mode.
Delete "boring" in the command mode.
What is another way you could have deleted "boring"?
4-3. Insert at the beginning of line 4:
congenial and computerized.
Delete the line.
How could you delete the line and leave it blank?

Delete all the lines with one command.

4-4. Leave the screen editor and remove the empty file from your
directory.

CHANGING TEXT

Instead of deleting text using a delete command and then creating
text with a text input command, the three basic commands, <r>,
<s>, and <c¢> both erase the text and then create new text.

6-60

CHANGING TEXT

Replacing Text

R Replace one character that is typed over.

<r> Replace the current character, the character pointed
to by the cursor. This is not a text input mode. It
does not need to be ended by <ESC>.

" "

<nr> Replace "n" characters with the same letter. This
command automatically terminates after “nth"
character is replaced. It does not need the <ESC>.

<R> Replace only those characters typed over until the
<ESC> command is given. If the end of the line is

reached, this command will then begin appending
new text.

The <r> command will replace the current character with the next
character that is typed in. For example, in the sentence below you
want to change "acts" to "ants”.

The circus has many acts.
Place the cursor under the "c" of "acts".
Type in: m
The sentence becomes:

The circus has many ants.
To change "many"” to "6666", place the cursor under the "m" of "many".
Type in: 4r6
The <r> command changes the four letters of "many” to 6s.

The circus has 6666 ants.

6-61

SCREEN EDITOR TUTORIAL (vi)

Substituting Text

The substitute command replaces characters, but then allows you to
continue to create text from that point until you press <ESC>.

S Substitute for a character of text.

<g> Delete the character the cursor is on and append text.
End the text input mode with the ESC key.

<ns> Delete "n" characters and append text. End the text
input mode with <ESC>.

<5> Replace all the characters in the line.

The <s> command indicates the last character in the substitution
with a $. The characters are not erased from the screen until you
type over them, or leave the text input mode with the <ESC>
command.

Notice that you cannot use an argument with either <r> or <s>.
Did you try?

Suppose you want to substitute "million" for "hundred" in the
following example.

My salary is one hundred dollars.

T

Put the cursor under the h of hundred.

6-62

CHANGING TEXT

Then type in: 7s

Notice where the $ is placed.

My salary is one hundre$ dollars.

Now type in: million

Press the ESC key, and you will owe the Internal Revenue Service
$500,000.

Changing Text

The substitute command replaces characters. The change command
replaces text objects, and then continues to append text from that
point until you press <ESC>. To end the change command and
return to the command mode in vi, you must press the ESC key.

C Change. Replace a text object with
new text.

The change command can take an argument. You can replace a
character, word, or an entire line with new text.

<cw> Replace a word or the remaining characters in a word
with new text. The vi editor prints a § indicating the

last character to be changed.

<ncw> Replace "n" number of words with new text.

6-63

SCREEN EDITOR TUTORIAL. (vi)

<ce>

<necc>

<ncx>

<C>

<nC>

Replace all the characters in the line.

Replace all the characters in the current line and up
to "n" lines of text.

Replace "n" number of text objects "x", such as
sentences) and paragraphs }.

Replace the remaining characters in the line, from
the cursor to the end of the line.

Replace the remaining characters from the cursor in
the current line and replace all the lines under the
current line up to "n" lines.

For the <ecw> command and the <C>, a $ will indicate the last
letter that will be replaced. The characters will remain on the screen
until you have pressed the ESC key. When used to change one or
more lines of text, the change command simply deletes the lines that
are to be replaced, and then places you in the text input mode of vi.

To change a word, use the <cw>
command. In the next line change
the word "chang$" to "replace".

<cw >

In the example, notice that "replace” has more letters then "change".
Once you have executed the change command you are in the text
input mode of vi and you can add as much text as you want, until
you press <ESC>.

6-64

CHANGING TEXT

To change a word, use the <cw>
command. In the next line change
the word "replace" to "replace".

<ESC>

Try the other change comamands. Watch the screen. When you use
<C> the $ will appear at the end of the line. Try using other
arguments.

Type in:

Since you know the undo command, do not hesitate to experiment
with different arguments, or preceding the command with a number.
You must press <ESC> before you can use <u> since <c¢> places
you in a text input mode.

Compare <8> to <cc¢>. The results should be the same for both
commands.

SUMMARY OF CHANGE COMMANDS

<r> Replace only the current character.

<R> Replace only those characters typed over with new
characters until the <ESC> command is given.

<s> Delete the character the cursor is on and append text.
End the append mode with the ESC key.

<5> Replace all the characters in the line.

(Continued on next page)

6-65

SCREEN EDITOR TUTORIAL (vi)

SUMMARY OF CHANGE COMMANDS (continued)

<cw> Replace a word or the remaining characters in a word
with new text.

<ce> Replace all the characters in the line.

<nex> Replace "n" number of text objects "x", such as
sentences) and paragraphs }.

<C> Replace the remaining characters in the line, from the
cursor to the end of the line.

CUTTING AND PASTING TEXT ELECTRONICALLY

There is a set of commands that will cut and paste text in a file.
Another set of commands will copy a portion of text and place it in
another section of a file.

Moving Text

You can move text from one place to another in the vi buffer by
deleting the lines and then placing them at the spot in the text that
you want them. The last text or lines that were deleted go into a
temporary buffer. If you move the cursor to that part of the file

where you want the deleted lines to be placed and press the "p" key,
the deleted lines will be added below the current line.

P The put command <p> puts the last
vank or delete in the proper place.

6-66

CUTTING AND PASTING TEXT ELECTRONICALLY

<p> Place the contents of the temporary buffer after the
cursor.

<np> Place "n" number of copies of the temporary buffer
after the cursor.

A partial sentence that was deleted by the <D> command can be
placed in the middle of another line. Position the cursor in the space

between two words, then press "p". The partial line is placed after
the cursor.

Characters deleted by <nx> also go into a temporary buffer. Any
text object that was just deleted can be placed somewhere else in the
text with <p>.

The <p> command should be used right after a delete command
since the temporary buffer only stores the results of one command at
a time. The <p> command also places a copy of text after the cursor
that had been placed in the temporary buffer by the yank command.
Yank <y> is discussed next in Copying Text.

Fixing Typos

A quick way to fix typos that consist of transposed letters is to
combine the <x> and the <p> commands as <xp>. <x> deletes
the letter. <p> places it after next character.

Notice the error in the next line.

A line of tetx

This error can be quickly changed by placing the cursor under the "t"

Mo

in "tx" and then pressing first "x" and then "p" keys. The result is:

A line of text

Try it. Make a typing error in your file. Then use <xp>.

6-67

SCREEN EDITOR TUTORIAL (vi)

Copying Text

You can

'vank" (copy) a part of the text into a temporary buffer, then

move the cursor to that part of the file where you want to place a
copy of the text, and place it there. <p> places the text after the

current line.

The "yank" command follows the general form of a vi command. It
allows you to specify the number of text objects that you want copied.

N\

<yw>

<yy>
<nyy>

<y)>
<y}>

<nyx>

[number]yftext object]

The "yank" command <y> saves a copy
of the text object.

Yank a copy of a word.

Yank a copy of the current line into a temporary
buffer to be placed below another line,

Yank "n" lines into a temporary buffer to be placed
below the current line. "n" is the number of lines.

Yank a copy of a sentence.
Yank a copy of the paragraph.

n_n

Yank "n" number of text objects "x", such as sentences
) and paragraphs }.

Try the following command lines and see what happened to your
screen. Of course you can undo the last command.

Type in: Syw

Move the cursor to another spot.

Type in: p

6-68

CUTTING AND PASTING TEXT ELECTRONICALLY

Try vanking a paragraph <y}> and placing it after the current
paragraph, then move to the end of the file <G> and place that
same paragraph at the end of the file.

Copying or Moving Text Using Registers

If you have several sections of text that you wish moved or copied to
a different part of the file, it would be tedious to move each portion
one at a time. vi has named registers, which are electronic storage
boxes where you can store the text until you want to place it into a
specific spot in the file. These registers are named for each letter of
the alphabet, a through z. You can either yank or delete text to one
of these registers.

These commands are handy if you have an example that you want to
use several times in the text. The example will stay in the specified
register until you end the editing session or yank or delete another
section of text to that register.

The general form of the command is:

[number"ljcommand]text object]

The 1 represents any letter, and is the name of the register. You can
precede the command with a number to indicate how many text
objects, such as words or lines, that you want to save in the register.

Place the cursor at the beginning of a line.
Type in: 3"ayy
Now, type in more text. Then, go to the end of the file.

Type in: ap

Did the lines you saved in register "a" appear at the end of the file?

6-69

SCREEN EDITOR TUTORIAL (vi)

SUMMARY OF CUT AND PASTE COMMANDS

<p>

<yy>

<nyx>

<"lyn>

<"lp>

Place the contents of the temporary buffer containing
the last delete or yank command into the text after the
Cursor.

Yank a line of text and place it into a temporary buffer.

"on

Yank a copy of "n" number of text objects "x" and place
them in a temporary buffer.

Place a copy of text object "n" in the register named by
a letter "1".

Place the contents of register 1 after the cursor.

EXERCISE 5

5-1. Edit the file exer2. Notice that this is the same file you created
in Exercise 2.

Go to line 8 and change that line to read "END OF FILE".

5-2. Yank the first eight lines of the file and place them in register

"_n

Z.

Put the contents of register "z" after the last line of the file.

5-3. Go to line 8 and change that line to read "8 is great”.

5-4. Go to line 18 and make the same change as you did in 5-3.

5-5. Go to the last line of the file. Substitute "EXERCISE" for "FILE".
Replace "OF" with "TO".

6-70

SPECIAL COMMANDS

SPECIAL COMMANDS

There are some special commands that you will find useful.
<.> Repeat the last command.
<J> Join two lines together.

<\>
or
<"v> Print out nonprinting character.

<"> Clear the screen and redraw it.

<~> Change lowercase to uppercase and vice versa.

Repeating the Last Command

Repeat the last
change command.

You may have already accidentally pressed the ™" key, thinking that
you were adding a period at the end of your sentence. If you were in
the command mode of vi, you were unpleasantly surprised by the last
text change suddenly appearing on the screen.

The period repeats the last change command. This is a very handy
command when it is used with the search command. For example,
you forgot to capitalize the "S" in United States. However, you do
not want to capitalize the "s" in "chemical states”. One way you could
correct this problem is search for "states". The first time you found
"states" in United states, you would change the "s" to "S". The next
occurrence you found, you would simply press the "." key and vi
would remember to change the "s" to "S™.

The <.> will repeat change, or create, or delete, or put commands.
Experiment with the commands. Watch the screen to see how the
text is affected.

6-71

SCREEN EDITOR TUTORIAL (vi)

Joining Two Lines

SHIFT] Join the line below the current line
with the current line.

The <J> command joins lines. Place the cursor on the current line,
hold down the SHIFT key and press the "j" key. The line below the
current line is joined to the current line at the end of the current
line.

Now is the time to join
forces.

To join these two lines into one line, place the cursor under any
character in the first line.

Type in:]
Those two lines become:

Now is the time to join forces.

Notice that vi automatically places a space between the last word on
the first line and the first word on the second line.

Typing Nonprinting Characters

In the section of this tutorial on deleting in the text input mode, two
commands were mentioned that are probably seldom used, but act as
commands and will not print out in your text. How do you get
characters that are commands in the text input mode to type out in
your text? Precede them with a \ .

6-72

SPECIAL COMMANDS

\ Type in nonprinting characters.

What happens when you want to type in the @ character? Try it. It
erased the line you are working on. How do you type in the @
character?

Type in: \@

Clearing and Redrawing the Window

CTRL L Clear and redraw the current screen.

N\

One of the frustrating things that can happen to you in vi is that
another user in your UNIX system decides to send you a message
using the write command. If you have not turned off your messages
in the shell, the message will appear right at the spot where you are
editing in the current window. After you have read the message,
how do you restore the current window? If you are in the text input
mode, you must end it with the <ESC> command to get you into
the command mode of vi. Then, hold down the CTRL key and press
the "1" key. vi will clear away the garbage, and redraw the window
exactly as it was before the message arrived.

Changing Lowercase to Uppercase and Vice Versa

~ Change uppercase to lowercase,
or lowercase to uppercase.

6-73

SCREEN EDITOR TUTORIAL (vi)

A quick way to change any lowercase letter to a capital letter or any
capital letter to lowercase is the <~> command. To change a to A,
or B to b press —. This command does not allow you type in a
number before the command and change several letters with one
command.

SUMMARY OF SPECIAL COMMANDS

< > Repeat the last command.

<J> Join the line below the current line with the current
line.

<\x> Print the nonprinting character x that does not print

out in the text input mode.

<"v> Print characters that do not normally print out in the
text input mode.

<> Clear and redraw the current window.

<~> Change lowercase to uppercase, or vice versa.

LINE EDITING COMMANDS

The screen editor vi also has some line editing capabilities. The line
editor associated with vi is called ex. However, the ex commands are
very similar to the ed commands discussed in Chapter 5. If you know
the ed commands, you may want to experiment on a test file and see
how many will work in vi.

There are many commands in the ex editor that can be called from vi.
These commands are discussed at length in the UNIX System Editing
Guide. (See Appendix A.) Only a few of the most useful commands
are discussed here.

6-74

LINE EDITING COMMANDS

Call in the line editor commands.

N\

To call in the line editor commands, type in a " from the command
mode of vi. The cursor will drop down to the bottom of the screen
and display the ":". As you try out the line editing commands notice
that they print out at the bottom of the editing window.

A powerful and useful command of ex is the command that
temporarily returns you to the shell. You can return to the shell,
perform some shell commands (even edit and write another file in vi)
and then return to the current window of vi.

:sh <CR> Temporarily return to the shell, leaving the vi buffer
with the cursor on the current line.

~

<"d> After you have executed the shell commands, hold
CTRL and press "d". You will return to the exact line
and window you were editing before you left vi.

Even if you change directories while you are temporarily in the shell
and then execute <"d>, you will return to the vi buffer in the
directory where yvou were editing the file.

Write Text to a New File

What do you do if you want only part of the file in the editing buffer
placed in a UNIX system file?

Many of the commands in ex will accept a line number or a range of
line numbers typed in before the command w. Try to write the third
line of the buffer to a file named three.

Type in: :3w three<CR>

Notice the system response.

"three" [New file] 1 line, 20 characters

6-75

SCREEN EDITOR TUTORIAL (vi)

The "." is the special character that indicates the number of the
current line.

Type in: ww junk<CR>

A new file called junk will be created containing only the current line
in the vi buffer.

You can also specify the range of lines. To write lines 23 through 37
to a file, type in:
23,37w newfile <CR>

Finding the Line Number
If you want to specify a range of lines, you can find out the line
number of that line by moving the cursor to that line.

Type in: =<CR>

The editor will come back with the response that is the number of
that line.

If you want to know the number
of this line, type in :.=<CR>

As soon as you press RETURN, the bottom line will clear and give
you the number of the line in the buffer.

If you want to know the number
of this line, type in :(=<CR>

34

6-76

LINE EDITING COMMANDS

",

You can move the cursor to any line in the buffer by typing in a ™
and the line number.

n<CR> Go to the "nth" line of the buffer.

Deleting the Rest of the Buffer

One of the easiest ways to delete all the lines from the current line to
the end of the buffer is to use the line editor command to delete
lines.

Type in: :.,$d <CR>

The "." is the current line, and the last line is §.

Adding a File to the Buffer

If you have a file with some data or text in it that you would like to
add below a specific line in the editing buffer, you can do so with the
:r command. To read in the file data place the cursor on the line
above the desired insertion.

Type in: x data<CR>

You may also specify the line number instead of moving the cursor.
Insert the file data below line 56 of the buffer.

Type in: :56r data<CR>

Do not be afraid to experiment, <u> will undo the ex commands
too.

Making Global Changes

One of the most powerful commands in ex is the global command.
The global command is given here to help those users who are
familiar with the line editor. Even if you are not familiar with a line
editor, you may want to try the command on a test file.

If you had typed in several pages of text about the DNA molecule,
calling its structure a "helix", you would have to change each
occurrence of the word "helix" to "double helix". This could be a long

6-77

SCREEN EDITOR TUTORIAL (vi)

wn

involved process searching for each one and probably using the
command of ¥i to repeat the change. If you are sure you want every
"helix" changed, you can use the global command of ex. You need to
understand a series of commands to do this. Let’s take one at a time.

:g/charactexrs <CR>
Search for these exact characters.
Type in: g/helix<CR>

The line editor does a global search for the first
instance of the characters "helix" on a line.

:s/text/new words/ <CR>

This is the substitute command. Instead of writing
over the word text, as the screen editor would have
done, the line editor searches for the first instance of
the characters text on the current line, and changes
them to mew words. You must tell ex what word you
are looking for and it must appear between the first
two delimiters, /. It will then replace only those
exact characters with the exact characters, new words,
between the last two delimiters.

s/ text/new words/g <CR>

By adding a "g" at the end of the last delimiter of this
command line, ex will change every occurrence on
the current line.

:g/helix/s/ /double helix/g <CR>

This command line searches for the word helix. Each
time helix is found, the substitute command
substitutes double helix for every instance of helix
on that line. The delimiters after the s do not need
to have helix typed in again. The command
remembers the word from the delimiters after the
global command g.

6-78

LINE EDITING COMMANDS

This is a very powerful command. If it is confusing to you, but you
still want to add it to your vi command knowledge, read Chapter 5 on
the line editor ed for a more detailed explanation of the global and

substitution commands.

SUMMARY OF LINE EDITOR COMMANDS

sh<CR>

<"d>

m<CR>

x,zwW data<CR>

S<CR>

= 3d<CR>

:r shell.file<CR>

s /text/new words/ <CR>

s/ text/new words/g<CR>

:g/text/s//new word/g<CR>

Indicates that the next commands are
line editor commands.

Temporarily return to the shell to
perform some shell commands.

Escape the temporary shell and return
to edit the current window of vi.

Go to the "nth" line of the buffer.
Write lines from the number "x"
through the number "z" into a new file
called data.

Go to the last line of the buffer.

Delete all the lines in the buffer from
the current line to the last line.

Insert the contents of shell.file under
the current line of the buffer.

Replace the first instance of the
characters text on the current line
with new words.

Replace every occurrence of text on
the current line with new word.

Change every occurrence of text to
new word.

6-79

SCREEN EDITOR TUTORIAL (vi)

QUITTING Vi

There are six basic command sequences to quit the vi editor.

<EZE> Write the contents of the wi buffer to the UNIX
system file currently being edited and quit vi.

wq <CR> Write the contents of the vi buffer to the UNIX
system file currently being edited and quit vi.

ww filename <CR>
:q<CR> Write the temporary buffer to a new file named
filename and quit vi.

:w! filename <CR>
:q<CR> Overwrite an existing file called filename with the
contents of the buffer and quit vi.

g <CR> Quit vi without writing to the shell file.

:q<CR> Quit vi without writing the buffer to a UNIX system
file. This command, without the write command w,
can only be used in special cases, such as the view
command discussed in the mnext section, or if the
buffer has not been changed.

The commands that are preceded by a ™" are line editor commands.

The <ZZ> command and :wq command sequence both write the
buffer to a UNIX system file, then quit vi, and return you to the shell
command level. You have tried the <ZZ> command, now try to exit
vi with :wq.

Type in: wgq<CR>

The system response is the same as it is for the <ZZ> command. It
gives you the name of the file, and the number of lines and
characters in the file.

vi remembers the file name of the file currently being edited, so you
do not have to reiterate the file name when you want to write the
buffer of the editor back into that file. What do you do if you want
to give the file a different name?

6-80

QUITTING Vi

If you want to write to a file called junk:
Type in: :w junk<CR>

After you write to a2 new file, you can leave vi by just typing in the
:q.

Type in: :q<CR>

If you try to write to a file called letter that already exists in the shell,
you will receive a warning:

"letter" File exists - use "w! letter" to overwrite
Type in: wi letter<CR>

You will erase the current file called letter and overwrite it with the
new file.

If you began editing a file called memo, made some changes to the
file, and then decided you didn’t want to make the changes, or you
accidentally pressed a key that gave vi a command you could not
undo, you can leave vi without writing to the file.

Type in: :g!<CR>

SUMMARY OF QUIT COMMANDS

<ZL> Write the file and quit vi.
wq<CR> Write the file and quit vi.
:w filename <CR>

q<CR> Write the editing buffer to a new file named
filename and quits vi.

(Continued on next page)

6-81

SCREEN EDITOR TUTORIAL (vi)

SUMMARY OF QUIT COMMANDS (continued)

ww! filemame <CR>
q<CR> Overwrite an existing file called filename with the
contents of the editing buffer and quits vi.

I <CR> Quit vi without writing to the buffer.
:q<CR> Quit vi without writing the buffer to a UNIX
system file.

SPECIAL OPTIONS FOR vi

The vi command has some special options. It allows you to:
- Recover a file lost by an interrupt to the UNIX system,

~ Place several files in the editing buffer and edit each in sequence,
and

~ View the file with the vi cursor positioning commands.

Recowvering a File Lost by an interrupt

There are times when an interrupt or a disconnect will cause the
system to exit the vi command without writing the temporary buffer
to the UNIX system file. Or, you may become confused or have a
problem with the wi editor that you cannot solve. If that happens,
one solution is simply to hang up, or disconnect from the UNIX
system. In both of these cases, the UNIX system will store a copy of
the buffer for you. When you log back into the UNIX system you
will want to restore the file with the —x option for the vi command:

Type in: vi —r filename <CR>

6-82

SPECIAL OPTIONS FOR vi

The changes you made to the file filename, before the interrupt
occurred, are now in the vi buffer. You can continue editing the file,
or you can write the file and quit vi. The vi editor will remember
the file name and write to that file.

Editing Multiple Files

If you wish to edit more than one file in the same editing session,
type in the vi command followed by each file name.

Type in: vi filel file2 <CR>
vi will respond by telling you how many files you are going to edit.

2 files to edit

After you have edited the first file, file], you need to write the
changes to the shell file.

Type in: w<CR>

The system response to the :w <CR> command will be a message at
the bottom of the screen giving the name of the file, and how many
lines and characters are in that edited file. Then you must ask for the
next file in the editing buffer with the :n command.

Type in: m<CR>
The system response to the command :m<CR> is a notice at the

bottom of the screen with the name of the next file to be edited and
the character and line count of that file.

Pick two of the files in your current directory and enter vi to place
the two files in the editing buffer at the same time. Notice the
system responses to the commands at the bottom of the screen.

6-83

SCREEN EDITOR TUTORIAL (vi)

SUMMARY OF SPECIAL OPTIONS FOR vi

vi filel file2 file3<CR> Enter three files into the wi buffer to be

edited. Those files are filel, file2, and file3.

w<CR>

m<CR> Write the current file and call the next
file in the buffer.

vi —r filel<CR> Restore the changes made to the file filel.
EXERCISE 6

6-1. Try to restore a file lost by an interrupt.

6-2.

6-3.

6-84

Enter vi, create some text in a file called exer6.
Turn off your terminal without writing to a file or leaving vi.
Log back in to your terminal.
Try to get back into vi and edit the exer6 file.
Place exerl and exer? in the vi buffer to be edited.
Write exerl and call in the next file in the buffer, exer2.
Write exer2 to a file called junk.
Quit vi.
Try out the command:
vi exer* <CR>
What happens? To quit vi:

Type in: 2ZZL ZZ

CHANGING YOUR ENVIRONMENT

6-4. Look at exer4 in read only mode.
Scroll forward.
Scroll down.
Scroll backward.
Scroll up.

Quit and return to the shell.

CHANGING YOUR ENVIRONMENT

If you are going to edit with vi you will want to change your login
environment so that you do not have to reconfigure your terminal
each time you login. Your login environment is controlled by a file
in your login directory called the .profile. The .profile is explained in
more detail in the shell tutorial in Chapter 7.

You are about to edit your .profile that sets up your environment each
time you login. If you are concerned that you might cause a problem
with your .profile in the editing process, you may want to keep a
backup copy of your original .profile for safekeeping.

From your login directory, type in:
cp .profile safe.profile<CR>

Now that you have a copy of your .profile in a safe place, safe.profile,
you can edit your .profile just like any other file in vi.

Type in: vi .profile<CR>

Go to the last line of the file, ignoring all the lines currently in the
file.

Type in: G

You are going to add two lines to the bottom of the file, the same
terminal configuration you typed in at the beginning of your login
session so that you could enter vi.

6-85

SCREEN EDITOR TUTORIAL (vi)

Type in: <o>
Now you are ready to append text to the end of the file.

Type in: TERM=code <CR>
export TERM <CR>

Remember "code" is the specijal code characters for your type of
terminal.

Write and quit vi. Now, the next time that you log into the UNIX
system TERM is automatically set and you can immediately begin
editing with vi.

Setting the Automatic Carriage Return

If you want an automatic carriage return, create a new file .exrc. The
.exrc file controls the editing environment for wi. There are several
options you can set in this file. If you want to know more about .exrc,
read the Editing Guide. (See Appendix A.)

Type in: vi .exxc<CR>
Add one line to this file.
Type in: wm=n<CR>

()

n" is the number of characters from the right side of the screen
where the carriage return will occur. If you want a carriage return at
20 characters from the right edge of the screen,

Type in: wm=20<CR>

Write and quit that file. The next time you login this file will give
you an automatic carriage return.

You can check on these settings, the terminal setting and the
wrapmargin (automatic carriage return) when you are in vi.

Type in: set<CR>

6-86

CHANGING YOUR ENVIRONMENT

vi will tell you the terminal type and the wrapmargin. You can also
use the :set command to create or change the wrapmargin. Try
experimenting with it.

Now you know the basics of vil Experiment with the commands,
find the ones that work best for you.

6-87

SCREEN EDITOR TUTORIAL (vi)

ANSWERS TO EXERCISES

There is often more than one way to perform a task in vi. If the way
you tried worked, then your answer is correct. Below are suggestions
for performing the task given in the exercise.

Exercise 1

1-1. Look up your terminal code with the following command. Type in:
grep "your type of terminal’ /etc/termcap <CR>

The first two letters of of the system response are your terminal code.
Type in:

TERM=code <CR>
export TERM <CR>

1-2. Type in:
vi exer] <CR>
<a>
This is an exercise! <CR>
Up, down<CR>
left, right, <CR>
build your terminal’s <CR>
muscles bit by bit. <ESC>

1-3. Use the <k> and the <h> commands.
1-4. Use <x>.
1-5. Use the <j> and <}> commands.
i-6. Type in:
<a> <CR>
and byte by byte <ESC>
Use <j> and <I1> to move to the last line and character of the file.
Use <a> to add text. <CR> will create the new line. <ESC> will

end the create mode.

1-7. Type in:
ZZ

6-88

ANSWERS TO EXERCISES

1-8. Type in:

vi exerd <CR>

System response:
"exer1" 6 lines, 100 characters

Exercise 2

2-1.

2-2.

2-3.

2-4.

2-6.

Type in:
vi exer2 <CR>
<a>1<CR>
2<CR>
3<CR>

48 <CR>
49<CR>
50<ESC>

Type in:
<"f>
<"b>
<"u>
<"d>

Notice the line numbers as the screen changes.

Type in:
<G>
<o>
123456789 123456789 <ESC>

$ = end of line
0 = first character in the line

Type in:
<">
<w>

<e>

Type in:
<1G>
<M>
<L>
<H>

6-89

SCREEN EDITOR TUTORIAL (vi)

2-7.

Type in:
/8
<m>
/48

Exercise 3

3-1.

3-2.

3-3.

3-5.

3-6.

Type in:
vi exer3 <CR>

Type in:
<a> Append text <CR>
Insert text<CR>
a computer’s <CR>
job is boring. <ESC>

Type in:
<O>
financial statement and <ESC>

Type in:
<3G>
<i>Delete text<CR> <ESC>

The text in your file now reads:

Append text

Insert text

Delete text

a computer’s

financial statement and
job is boring.

The current line is "a computer’s”. To create a line of text below that
line use the <o6> command.

The current line is "byte of the budget".

<G> will put you on the bottom line.

<A> will begin appending at the end of the line.
<CR> will create the new line.

Then, type in the text "But, it is an exciting machine.”
<ESC> ends the append mode.

3-7. Type in:

ANSWERS TO EXERCISES

<1G>
[text
<j>some <space bar> <ESC>

3-9. <ZZ> will write the buffer to exer3 and put you in the command mode
of the shell.

Exercise 4
4-1. Type in:
4-2. Type in:

vi exerd <CR>

<a> When in the course of human events <CR>
there are many repetitive, boring <CR>

chores, then one ought to get a<CR>

robot to perform those chores. <ESC>

<2G>

<A> tedious and unsavory <CR>
<8BS>

<ESC>

Press <h> until you get to the "b" of "boring" then press

<dw>.

Or, you could have used <6x>.

4-3. You are at the second line. Type in:

<2j>
<I> congenial and computerized <ESC>
<dd>

To delete the line and leave it blank, type in:

<0> (zero to place you at the beginning of the line)
<D>

<H>
<3dd>

4-4. Write and quit vi.

Remove

<Zi>

the file.

rm exer4d <CR>

6-91

SCREEN EDITOR TUTORIAL. (vi)

Exercise 5
5-1. Type in:
vi exer2 <CR>
<8G>
<ec> END OF FILE <ESC>
5-2. Type in:
<1G>
<8'zyy>
<G>
<"zp>
5-3. Type in:
<8G>
<ce> 8 is great<ESC>
5-4. Type in:
<18G>
<.>
5-5. Type in:
</[FI>
<ew> EXERCISE<ESC>
<?0F>
<R>TO<ESC>
Exercise 6
6-1. Type in:

vi exer6 <CR>
<a> (append several lines of text)
<ESC>

Turn off the terminal.
Turn on the terminal.
Log into the UNIX system. Type in:

vi —r exer6 <CR>
wg <CR>

6-92

ANSWERS TO EXERCISES

6-2. Type in:
vi exerl exer2<CR>
w<CR>
m<CR>

:w junk <CR>
Zz

6-3. Type in:
vi exer® <CR>

(Response)
8 files to edit (vi calls in all files with
names that begin with exer.)

ZZ
ZZ

6-4. Type in:
view exerd <CR>
<"f>
<"d>
<"b>
<"u>

6-93

Chapter 7

SHELL TUTORIAL

MAKING LIFE EASIER IN THE SHELL .ononnoecomremmmmmennssssssssnmnmennmnmnmsssssssanasssnmmmesennann

HOW TO READ THIS TUTORIAL ..connmnnecemmanaceeeannanmnmmnasaasssasnsnsnnnsnnsmsmesassssensnsssssenann

SHELL COMMAND LAMNMGUAGEo rerennnnmannnnmmnnnsmansnnssasnssnsnnssnsnsmmnssssssnsssasnsnsssan =
Special Characters in e SH@I ... viceeceansnonrsensnsnssnsssssssnsnanssnnsnnnsesnannmsnsnens

O RACH AT ACEEES 1rnnnreeinsnnnnnnnmnnnnnsnsnnnaansasnnnmnnnsnnnsannsessnsanannansnssrannannnnnnnnesnnas

Metacharacter that Matches One CharaCherccrrrmnrmnncmmnsnmmnnsssnnnnansnanrsnees
Metacharaclers that Match One of a Specific Range of Characters........
Commands in the Background MOGE .. .c.ceeeenrrmrnnnsenennesssnansssnnssessnsansenns
SeqUential EX@CURIOMN «nuwecrerircnnnnensnnrseasmmamnennnnnssananannnssasssnnnnsnnnesnsnssnnnnsnn
Turning Off Special Character MeamiNGuwmmwremrmsnsssnesnnmssnsnsressnnnnnnnsnsnsen
Turning Off Special Characters BY QUOIING vuaremrerersrnessrrrnrreonnssnnnnnsnssnssner
Redirecting Input amod OUEDIIT . eeoeovonrnsnnrnnesennasnnsnnsnassnsannnnnsnnmmnnneeannn

Command QURPUE SUDSTIRURION «.cvurircrmnannsennnmnnnsnnnesasssnssssnmnnnsnnssosnssensnanses
Executing and Terminating PrOC@SS o mmrrnmrnnsmnnnsnonssonsnnsmsnnssmmmesansnnnnsansssen
Running Commands At 8 LaReF TIM@ . .nrwunrrennmmnanssnssransanssnssssnnnsnnsssnssenneennne
Obtaining the Status of RUNNING PrOCESSES wmmwmmrrrrrasmanmsnsnsnsnssnnssnnsennnnmmnn
Terminating ACK Ve PrOCESS@S nurirmrrnnmmnrmrnannennsaananssnsmnnssnsssnsssnnssnnssensmesnsns

Using the Mo Hang Up COMMEANGTwmrirennammnsmmnnsnnssrnssnsssensssnnnsnnnssanssssssnnnn
COMMAND LANGUAGE EXERCISES ...oevenninnnnnnnanasssnsmmnnssssnnssssanssssssnssnssnnsnssssnanssnns

SHELL PROGRAMMINMGccecrrnmnnrncnannasssnsnnmmnnnnsssnnsnsssnssssnsnnssssnnnsssnsssssssenssesnnsenees
L=y u T B = -« O RN
Creating @ SIMPIE SHel PrOGIAM . arirrsrnrsannssssmmsansssnsensssnsssnssssanssnnnsnnones

EXeCUting @ SHEM PrOGF@MN «unumecermonrsrnansnnssnnssanssnnseasasnmssnnnssnssnssssssnnssnnssnns

PAGE

-1

7-2

728

Creating a bin Directory for EXecutable FileSccuevereennncmennnsssnmmmmsmmmmesasss 7-36

R T Lo 7-38
POSitioNal ParameEENScccucenmmmnsnnnenmsssnnnnnnnannsssannnsnsnsnnsnnsansmmnnnnnsnansassanses 7-39
Parameters with Special M@AMINGrnrrenwmmnrmreenrsncrsnsarsnnmonesnannnnssnnsssansnsnnns 7-43
Variable Names R R AA AR AR R AR AR R AR AR AR AR AR R AR A 7-46
AsSIgN Values t0 VATIADIESciwwnecneacnecnnmrnnnmensmsnnmannanssnssnnsnnnnnsnsssnnssnnnsnnns 7-48
Assign Variable by the Read Commant..werecrornennsnssnmmmmonsenssnssnsnmees 7-48
Substitute Command Qutput for the Value of a Variable ...c.ceesemrennmemneennnn 7-52
Assign Values with Positional Parameters.ccvveveeemnmmnnmnnnnmnsssssssnscnmnnnnn 7-54
Shell Programming CoOMSETUCES . eeererernnnnnssranomensnnesnnssssmsmonmmnemsssnensessmsenssnns 7-55
COMIMIEIIES .. nresnnrncnnnnnnnnnanmennnannmmanseremnresnmanasmnmnnnasnmaRReAsanennn o nsnnsnssansnnnsnnn 7-56
THE Here DOCUMEME...v crrrrrrcrnnnnrnansasnnnnenascnnannsnnsnsnnsssnnnsnnnnennnnnnnssnnnnsnnns 7-56
UsSiNg @d I @ Shell PROGIam e ecceecncrmnasnnenssnnssmonnnnssnnnsnnsmnnsssssssssmnsnns 7-58
LLOODINMG crnennnnnnnnnnnnnnenannsnsnnnnsnnnnnnnnannnnnnssnnnannsnamnansnnnnnnssnsssnnnnanmennnnennssnnsnnnen 7-60
THE FOF LOOP 1nnnrnnmnmmnmnnnnnnnnnnnnnnesnnnsnnssnasnnanasnnsnnnsnsnnssnnnnsnnnnsnsnnnnsnnnanasnnnnnen 7-61
THE WHIIE LOOD cnnensannnsnnnnnnanmnnnanmnnnnsnnsnnnssnnnnsannansnnnsnnmsnnnnnsnssnnanansnnnsnnnsnnsnen 7-64
Conditional Constructs .. ANeMcccreemenanannnnnnnnnasnesenanannnnsnmanennsasannanssnns 7-66
The Shell Garbage Can /deY /MUcwnrernncenmamrmnnmsnsmnannssnnsannnnnsnennnssnnnsnses 7-67
The test COMMANMA FOF LLOODS ccirenrrnnnnnanuenmrnnnmnnnssnsnmsnsmmennsnnennssnnsns s snnnonn 7-69
The Conditional ConStruct CaSe...088C..mmmmmrarrcennnmmmnnninssnanensssssssnnsseneanen 7-72
Unconditional Control Statement BrEaKcrwwweereesmmmmnsscssssmssnnnsnnssnnsssnns 7-75

D EDUGGING PTOGIBIMNIS cenrnrrnnnnnarnnnsnnanasnmmnnsensnsnnnasmnnsssnnsssnssnsnmssesmnnssssnsnmnsmmsnsnn 7-77
Modifying Your Login EnVITONMI@ME. ieereeraccanemnnnsnannsnsesssns snnnssssnssensmssseees 7-80
WHAR IS @ .PTOMIE 2. rsnanmnnennnnnnnnennnsnnsanasancssannnsnnnannsamsnnsnnnnnnennnsnnnnssennsmmnnnn 7-80
Adding CommMANAS R0 PIOTHIR ...ovveerereeinenennennnnsensssannnrnnnmn e ennemeenan s ennnnnnn 7-81
Setting Terminal OPRIOMS. ..o e rrcrrrernecannmsanrnnsersnnmsnnsnmeansesnnnassasennesamemsnnn 7-82
USING Shell Yariables. ... euucmrmcneramennnnenmnnssnmnnnnssesnnsnssnnssssnonnsosnnsnsssnnsssennsees 7-83
COMCIUSIOM ocrrnnnnnnnnnnnnsansssnnnessnnssnnsnnansssssssssnnmmnssnmsnssnnnsnnnsannnnsnnssnsssnnsnnnnnnonsen 7-85
SHELL PROGRAMMING EXERCISEScnnnennsccmmmmecmnnnssnnnnsnsssnsessssssnssnsnanssnsesssnnnn 7-85
ANSWERS TO EXERCISES ..coorernnmnnsnnnasanesmmmsmmmsssssssssanmemmmnmmessssnsanassnnnesnsesnnnnsanmnnn 7-88
Command LaNGUaGe EXOICIS@S .uvenmrmneennneennmnnsreansmnnnnnnnssnnsssnnnensnsanssasssnssosssens 7-88

Shell Programming EX@ICIS@S o miernereencenremnansnsnsnssennnnesnnnnsnsasssssomnsenenonnsssnan 7-89

Chapter 7

SHELL TUTORIAL

MAKING LIFE EASIER IN THE SHELL

You have used the shell to interact with the UNIX system by typing
in commands that give you information, such as who, or commands
that perform a task, such as sort. This chapter introduces some
methods and commands that will help expedite the day-to-day tasks
that you perform in the shell.

The first part of the tutorial, Shell Command Language, introduces some
basic shortcuts and commands to help you perform tasks in the UNIX
system quickly and easily. The second part of the tutorial, Shell
Programming, shows you how to put these tasks into a file and call on
the shell to execute the commands in the file while you go get a cup
of coffee. The following basics are covered:

- How to use some special characters in the shell,

- How to redirect input and output,

- How to execute and terminate processes,

« How to create and execute a simple shell program,

~ How to use variables in a shell program,

~ How to use shell programming constructs for looping,
conditional execution, and unconditional execution,

» How to locate problems and debug a shell program, and

» How to modify your login environment by editing the file called
.profile.

SHELL TUTORIAL

If, after you have read this tutorial, you want to learn more advanced
concepts in shell programming, read UNIX System Shell Commands and
Programming. (See Appendix A.)

HOW TO READ THIS TUTORIAL

Log into youi“ UNIX system and try the examples as you read the text.
Experiment with the concepts and perhaps combine them into a shell
program. Often, there is more then one correct way to write a shell
program. You may discover a different method. If your shell
program works, if it performs the task, then it is a correct method.

Here is a quick review of the text conventions mentioned in Chapter 2
that are used throughout this book.

Kbold command (Type in the command line exactly as shown.)
italic response (The system’s response to a command.)

< > (Commands that are typed in, but not displayed
on your terminal, are enclosed in < >))

g (A control character, hold down the control key
CTRL while your press "g".)

A display screen like the one above is used to illustrate the
commands and the text of the shell programs. You may not be
working on a terminal with a screen. This will not affect the shell
tasks that you perform or shell programs that you create. The lines
that you type in and the system responses should be the same.

SHELL COMMAND LANGUAGE

SHELL COMMAND LANGUAGE

Special Characters in the Shell

The shell language has special characters that give you some shortcuts
for performing tasks in the shell. These special characters are listed
below and are discussed in this section of the tutorial.

*201 These are metacharacters. A metacharacter is a
character that has a special meaning in shell
command language. These metacharacters give you
shortcuts for file names.

& This character places commands in the background
mode. While the shell is performing the commands
in the background, your terminal is free for you to
work on other tasks.

; This character allows you to type in several
commands on one line. Each command must be
followed by a ; . When you type in the <CR>,
each command will execute sequentially from the
beginning of the line to the end of the line.

\ This character allows you to turn off the meaning of
special characters such as *, ?, [}, & and ; .

" Both double and single quotes turn off the

T delimiting meaning of the space, and the special
meaning of special characters. However, double
quotes will allow the characters $ and \ to retain
their special meaning. (The $ and \ are discussed
later in this chapter and are important for shell
programs.

Metacharacters

The meaning of the metacharacters is similar to saying "etc. etc. etc.”,
"all of the above”, or "one of these". Using metacharacters for all or
part of a file name is called file name generation. It is a quick and
easy way to refer to file names.

SHELL TUTORIAL

Metacharacter That Maiches All Characters

This metacharacter matches "all", any string
of characters, including no characters at all.

The * alone refers to all the file names in the current directory, the
directory you are in now. To see the effect of the *, try the next
command.

Type in: echo *<CR>

The echo command displays its arguments on your terminal. The
system response to eche * should have been a listing of all file names
in the current directory. However, unlike Is, the file names were
displayed in horizontal lines instead of a vertical listing.

Since you may not have used the echo command before, here is a
brief recap of the command.

Command Recap

echo - write any arguments to the output

comm