
CommKit Host Interface
Release 4.4
AT&T 3B2 RISC Computer
Systems
Installation and Administra-
tion Guide

255-110-127
Issue 3

September 1995

1

Additional Information

Copyright 1995 AT&T

All Rights Reserved

Printed in USA

Federal Communications Commission Statement
This equipment generates, uses, and can radiate radio frequency energy and if not installed and used
in accordance with the instruction manual, may cause interference to radio communications. It has
been tested and found to comply with the limits for a Class A computing device pursuant to Subject J
or Part 15 of FCC rules.

Trademarks
CommKit® is a registered trademark of AT&T.
Datakit® is a registered trademark of AT&T.
UNIX® is a registered trademark of Novell, Incorporated in the United

States and other countries, licensed exclusively through X/Open Company, Ltd.
Polywater® is a registered trademark of American Polywater Company.
Hydralube Blue® is a registered trademark of Arnco Equipment Company.
Imagen is a registered trademark of Imagen Corp.
PostScript is a registered trademark of Adobe Systems Inc.

Ordering Information
Additional copies of this document can be ordered by calling:

U.S.A.: 1-800-432-6600 Canada: 1-800-255-1242 Other Areas: 1-317-352-8557

or, by writing to: AT&T Customer Information Center
Attn: Customer Service Representative
P.O. Box 19901
Indianapolis, IN 46219

Additional Information 1-1

Table of Contents

1 Introduction
General 1-1

Description 1-2
Host Access 1-2
User Features 1-2
Local/Remote Login 1-2
File/Directory Transfer 1-3
Remote Execution 1-3

Administrative Features 1-3
Security 1-3
Services 1-3
Installation and Removal 1-5
Configuration and Maintenance 1-5
Print Spoolers 1-5
uucp Services 1-5
File Sharing 1-5

Development Features 1-6
Fiber Optic Link 1-6
General Server 1-6
High Performance Application Library 1-6
Network Independent Application Library 1-6

Document Overview 1-6
Reference Documentation 1-7
Glossary of Terms 1-9
Display Conventions 1-9
Format Conventions 1-10
CommKit Host Interface Software Release/UNIX
System Version Information 1-10

Equipment Description 1-11
Host Interface Module 1-11
CPM-HS Module and Paddle Board 1-12
Fiber Optic Cable 1-13
Cartridge Tapes 1-14
Software Certificate 1-14

Table of Contents i

Table of Contents

Customer Assistance 1-14
Manual Pages 1-15

Format 1-16

2 Installation/Removal
Preparation 2-1
Overview of Initial Installation 2-2
Install the CommKit Host Interface Software 2-2

Pre-Installation Procedures 2-3
Initial Installation Procedures 2-4
Non-Prompted Mode (_dkhost_parms File) 2-4
General Installation 2-6
Detailed Installation 2-7
Upgrade Procedures 2-11

Install the CommKit TLI Package 2-16
Install Host Interface Hardware 2-17

Procedure 2-17
Install the CPM-HS Module in the Data Switch Node 2-21
Route the Fiber Optic Cable 2-22

General 2-22
Tools and Hardware 2-23
Conduit Installation 2-23

Connect the Fiber Optic Cable 2-24
Configure the Data Switch Control Computer

Database 2-25
Define Group Name 2-26
Define Address for dkserver Service 2-27
Define Address for the Listener 2-28
Configure the CPM-HS Module 2-30

Run Diagnostics on Host Interface Module 2-31
Diagnostic Phases 2-32

Verify Operation 2-34
Verify the Operation of the dkdaemon Process 2-35
Verify the Operation of the dkserver Process 2-36
Verify Data Transfer Across the Interface 2-41
Verify Terminal Login Across the Interface 2-42
Verify Operation of the Remote Login Facility 2-43

ii Table of Contents

Table of Contents

Customize the Control Tables and dkitrc 2-44
Where To Go From Here 2-45

Remove the CommKit TLI Package 2-45
Remove the CommKit Host Interface Software 2-46

Non-Prompted Mode (_dkhost_parms File) 2-47
Prompted Mode 2-48

3 Control Tables
Introduction 3-1

Overview of Control Tables 3-1
Data Switch Dialstrings 3-2

Examples 3-5
dkhosts 3-7

Destination Mapping 3-10
dkgroups 3-13
srvtab 3-15

Server Table 3-16
System Field 3-17
.user Suffix 3-18

Service Field 3-18
– 3-19
* 3-19
authorize 3-19
dkload 3-20
do 3-20
login 3-20
pupu 3-20
rl 3-20
rx 3-21
uucp 3-21
whoami 3-21

Flags Field 3-21
User Field 3-24
Program Field 3-26
Initial Parms Field 3-26
Server Table Scanning Rules 3-28
Modifications to the Server Table 3-28
Server Table Validation and Matching 3-28

Group.user Facility 3-29

Table of Contents iii

Table of Contents

User ID Mapping Rules 3-30
Transparent User ID Mapping 3-30
Translated User ID Mapping 3-31
Fixed User ID Mapping 3-31
Restrictive User ID Mapping Ranges 3-32

Trapping Incoming Calls 3-34
Unauthorized Service Requests 3-35

Spawning a TLI Application 3-36
Server Table Entries Which Are Not Secure 3-38
Directory Mode for /etc/opt/dk/srvtab 3-40
Summary 3-41

dkdotab 3-42
dkuidtab 3-44

4 Administration
Introduction 4-1
Administrative Notes 4-1

UNIX System V Release 4 4-1
Files That Grow 4-3
dkitrc Script File 4-4
Linking of Host Interface Files 4-7
Special Device Files 4-8
Configuring uucp with d or g Protocol 4-10
Configuring Tables for Originating Calls 4-10
Configuring Tables for Receiving Calls 4-14

Using TLI Support 4-14
Configure netconfig File 4-15
Configure a Listener 4-15
Starting the Listener 4-17
Stopping the Listener 4-17
Verifying the Listener 4-18
Manually Restart the Port Monitor and Listener

Service 4-19
Configure Multiple Listeners 4-19
Configure Multiple TLI Interfaces 4-20
Configuring RFS to Use TLI 4-21
Configuring uucp to Use TLI 4-23
Other TLI Applications 4-26

iv Table of Contents

Table of Contents

Changing the Hardware Configuration After the
Initial Installation 4-27

Changing the Number of Channels 4-28
Troubleshooting Facilities 4-29

Software Troubleshooting Procedures 4-29
Troubleshooting the Host Interface Communication 4-32
Reading Status and Statistics 4-34

Diagnostics 4-35
3B2 Computer Diagnostics 4-35
Data Switch Control Computer Looparound
Diagnostics 4-36
Local_loop 4-36
Remote_loop 4-37

CommKit Host Interface Error Messages 4-38
Console Error Messages 4-38
Hardware Error Messages 4-39
Software Error Messages 4-40
Server Error Messages 4-41

Outgoing Call Error Messages 4-42
Printer Administration 4-50

Sharing a Printer on a Data Switch Network 4-51
Printer Configurations 4-52
Configuration 1: Connection to a Local Host 4-52
Configuration 2: Connection to a Data Switch Node;

Spooling Host Using Fiber 4-53
Configuration 3: Connection to a Data Switch Node;

PDD Connections 4-54
Configuration Procedures 4-55
Remote Host Configuration 4-55
Spooling Host Configuration Procedures 4-57
Data Switch Configuration Procedures 4-62

Troubleshooting Printer Problems 4-64
Printer Problems 4-65
dkdo Problems 4-66
dkcat Problems 4-67

Printer Flow Control 4-69
lp Subsystem Problems 4-69

CommKit Host Interface Exit Codes 4-69

Table of Contents v

Table of Contents

5 Compatibility
Introduction 5-1
Environment Variables Compatibility 5-1

DKINTF 5-2
DKGROUP 5-3

User-Level Compatibility 5-3
dk 5-4
dkcat 5-5
dkcu 5-5
dkdo 5-5
push and pull 5-5

Programmer-Level Compatibility 5-7
STREAMS 5-7
TTY Interface 5-7
Message Boundaries 5-8
Header Files 5-8
Library Interface Compatibility 5-9
Obsolete Library Routines 5-9
Supported Library Routines 5-10

System Call Compatibility 5-15
open(2) 5-15
read(2) 5-16
write(2) 5-16
poll(2) 5-17
close(2) 5-17
ioctl(2) 5-18

Examples 5-20
dk_info Example 5-21
dkitdial Example 5-22
dk_namer Example 5-24
dk_tnamer Example 5-24
dk_xnamer Example 5-25
dkgos Example 5-26
dkleveld Example 5-27
dksplice Example 5-28
isdkclosed, isdkeof, and isdkleveld Example 5-29
poll Example 5-32

vi Table of Contents

Table of Contents

6 Manual Pages
DK 6-1
DKAUTH 6-6
DKCAT 6-14
DKCU 6-15
DKDO 6-19
PULL 6-21
PUSH 6-23
AUTHORIZE 6-26
DKDAEMON 6-29
DKDEVS 6-37
DKIPUMP 6-39
DKITRC 6-40
DKLOAD 6-41
DKMAINT 6-44
DKREGISTER 6-46
DKSERVER 6-47
DKSRVERR 6-51
DKSTAT 6-54
DKUNLOCK 6-59
DK_FLUSH 6-60
DK_INFO 6-62
DK_NAMER 6-64
DK_UXINFO 6-65
DKDIAL 6-67
DKEPOINT 6-72
DKERR 6-74
DKGOS 6-81
DKLEVELD 6-83
DKMGR 6-86
DKSPLICE 6-93
DKSPLWAIT 6-96
DKTSPLICE 6-98
DKURPCTL 6-100
DKXENVIRON 6-101
MAPHOST 6-102

Table of Contents vii

Table of Contents

DKACCT 6-104
DKAUDIT 6-106
DKDOTAB 6-109
DKGROUPS 6-111
DKHOSTS 6-113
DKSRVLOG 6-115
DKUIDTAB 6-117
SRVTAB 6-118
DKHS 6-127
DKMX 6-130
DKPE 6-131
DKTLI 6-132
DKTY 6-134
DKUX 6-137
DKXQT 6-140

I Index
Index I-1

viii Table of Contents

Figures

Figure 1-1: Data Network 1-1
Figure 1-2: Logical Connectivity 1-4
Figure 1-3: Host Interface Module 1-11
Figure 1-4: CPM-HS Module and Paddle Board 1-12
Figure 1-5: Fiber Optic Cable (Dual Cable Shown) 1-13
Figure 2-1: Install Software – Initial Dialogue Example 2-7
Figure 2-2: 3B2/500 Cabinet Backplane Slots 2-17
Figure 2-3: 3B2/600 Cabinet Backplane Slots 2-18
Figure 2-4: Inserting the Host Interface Board 2-19
Figure 2-5: Host Interface Board Installed 2-20
Figure 2-6: Typical Rear View of a Data Switch Cabinet 2-21
Figure 2-7: Typical Front View of a Data Switch Cabinet 2-22
Figure 2-8: Fiber Cable Connections 2-25
Figure 2-9: CommKit Software Removal – srvtab as a Directory 2-49
Figure 2-10: Typical Customizing Files Screen 2-50
Figure 3-1: Server Table Fragment .user Example 3-29
Figure 4-1: Device Number Partitioning (16 bits) 4-8
Figure 4-2: verify Commands 4-31
Figure 4-3: Printer Directly Attached to One Host 4-52
Figure 4-4: Network-Connected Printer; Spooling Host Using dkcat 4-53
Figure 4-5: Network-Connected Printer Using PDD 4-54
Figure 4-6: Sample model File 4-58
Figure 5-1: dk_info Example 5-21
Figure 5-2: dkitdial Example 5-23
Figure 5-3: dk_namer Example 5-24
Figure 5-4: dk_tnamer Example 5-25
Figure 5-5: dk_xnamer Example 5-25
Figure 5-6: dkgos Example 5-26
Figure 5-7: dkleveld Example 5-28
Figure 5-8: dksplice Example 5-29
Figure 5-9: isdkclosed, isdkeof, isdkleveld Example 5-31
Figure 5-10: poll Example 5-33

Table of Contents ix

Tables

Table 1-1: UNIX System Documentation 1-7
Table 1-2: AT&T Host Interface Documentation 1-7
Table 1-3: AT&T Data Switch Documentation 1-8
Table 1-4: CommKit Host Interface Software Release/UNIX System Version 1-10
Table 2-1: Installation/Removal Procedures – Shell Variables 2-4
Table 2-2: Diagnostic Phases 2-32
Table 3-1: Server Table Flags 3-22
Table 3-2: User ID Mapping Options 3-25
Table 3-3: Program Arguments Specification 3-26
Table 3-4: Rejection Code Examples 3-34
Table 4-1: UNIX System V Release 4 – New Features 4-2
Table 4-2: File Location Changes 4-3
Table 4-3: Special Device Files – Example – Two Interface Boards 4-9
Table 4-4: Troubleshooting Printer Problems 4-64
Table 5-1: Status of Environment Variables 5-2
Table 5-2: Supported Library Routines 5-11
Table 5-3: Previously Supported ioctl System Calls and Current Status 5-18

Table of Contents xi

1 Introduction

General 1-1
Description 1-2
Host Access 1-2
User Features 1-2

Local/Remote Login 1-2
File/Directory Transfer 1-3
Remote Execution 1-3

Administrative Features 1-3
Security 1-3
Services 1-3
Installation and Removal 1-5
Configuration and Maintenance 1-5
Print Spoolers 1-5
uucp Services 1-5
File Sharing 1-5

Development Features 1-6
Fiber Optic Link 1-6
General Server 1-6
High Performance Application Library 1-6
Network Independent Application Library 1-6

Document Overview 1-6
Reference Documentation 1-7
Glossary of Terms 1-9
Display Conventions 1-9
Format Conventions 1-10
CommKit Host Interface Software Release/UNIX

System Version Information 1-10

Table of Contents i

Table of Contents

Equipment Description 1-11
Host Interface Module 1-11
CPM-HS Module and Paddle Board 1-12
Fiber Optic Cable 1-13
Cartridge Tapes 1-14
Software Certificate 1-14
Customer Assistance 1-14

Manual Pages 1-15
Format 1-16

ii Table of Contents

Introduction
General

This Installation and Administration Guide describes how to install and adminis-
ter the AT&T CommKit Host Interface on the AT&T 3B2 RISC Computer System.
The host interface consists of hardware and CommKit Host Interface software on
your computer system that provides the high-speed data link to an AT&T data
switch node. Figure 1-1 shows a typical data switch network.

Figure 1-1: Data Network

Fiber Optic
Cable

Fiber Optic Cable

C
P

M
-H

S
19

5A
C

19
5A

D3B2
Computer

M
C

A
-H

S
M

C
A

-H
S

NCR
3550

M
C

A
-H

S

NCR
3345

M
C

A
-H

S

NCR
3450

M
C

A
-H

S

NCR
3445

38
6-

H
S

StarServer
E

I/V
M

E
D

K
H

S

StarServer
FT 38

6-
H

S

6386

Terminal Printer

RS-232
Cable

Terminal
Fiber Optic Cable

RS-232
Cable

RS-232
Cable

TY
-1

2

C
P

M
-H

S

TR
K

-H
S

C
P

M
-H

S

C
P

M
-H

S

C
P

M
-H

S

C
P

M
-H

S

TR
K

-H
S

C
P

M
-H

S

C
P

M
-H

S

C
P

M
-H

S

Fiber Optic Cable

Fiber Optic Cable

Fiber Optic Cable
AT&T

Data Switch
AT&T

Data Switch

Fiber
Optic
Cable

Fiber
Optic
Cable

Fiber
Optic
Cable

Fiber
Optic
Cable

Note: Your network may include BNS-1000, BNS-2000, Datakit VCS, and Datakit II
VCS data switches. However, the host interface must be connected to a BNS or
Datakit II VCS. Throughout this document, data switch refers to the specific data
switch to which you are connecting.

Introduction 1-1

In
tr

od
uc

tio
n

General

Description

The host interface software and hardware allow you to connect your computer to
an AT&T data switch. The interface consists of:

1 . Software installed on the computer

2 . A host interface module installed in the computer

3 . A CPM-HS module installed in the data switch.

The host interface module and CPM-HS are connected with an optical fiber link.

Host Access

Most host computers have a limited number of RS-232 connections available;
extra ports may become available in groups of 8 or 16 with the addition of port
modules. This can tie up multiple I/O module slots in the host. Using CommKit
Host Interface software, you can configure up to 512 channels per fiber interface
module. Each channel acts as an RS-232 connection; a user can log into these
channels from a terminal or other host, or data can be sent to an output device
such as a printer.

As needs change, the number of channels the CommKit Host Interface software
supports can be changed with software commands.

User Features

The host interface offers features valuable to most users:

Local/Remote Login

Users can log on to their local systems or remote systems within a wide area net-
work (WAN). Users are no longer locked into a single system or local area net-
work (LAN).

1-2 Introduction

Introduction
General

File/Directory Transfer

Users can transfer files and directories with a single command. Unlike uuto
which only sends one file at a time, users can easily transfer an individual file or
a complete directory structure (with all sub-directories and files) using a single
CommKit Host Interface software command. CommKit Host Interface software
allows the sending and retrieving of files and directories as a single-step process.
And, CommKit Host Interface software allows users to transfer directories across
the network with the same command.

Remote Execution

Users can execute commands on local or remote systems with a single command.
The commands can be standard UNIX system applications, customized user pro-
grams, or shell scripts.

Administrative Features

The host interface offers several features to help system administrators.

Security

CommKit Host Interface software has been designed with security in mind. It
provides user ID security or transparent user ID mapping security, which
prevents the same user ID on one system from masquerading as another user on
a remote system. User commands for file transfer honor and preserve directory
and file permissions. Additionally, administrators can include/exclude specific
users and groups from access to a host computer over the host interface.

Services

The CommKit Host Interface software allows the user access to listenerand
dkserver services. Access to the dkserver service depends on permissions (ori-
ginating group security, refer to Chapter 3) and endpoint (service) addresses.

Introduction 1-3

In
tr

od
uc

tio
n

General

Figure 1-2: Logical Connectivity

AT&T Data Switch
Network

Host

Host

Listener Service

dkserver Service

default dkserver Service

default
Listener Service

Figure 1-1 illustrates the physical connectivity of the CommKit Host Interface
within a data switch network. A logical connectivity schematic is shown in
Figure 1-2. To use the CommKit Host Interface services, the administrator must
understand the logical connections between host names, server names, and
originating group security.

The host name (uname) can connect to listener or other services by defining a dif-
ferent server name for each service. Consider the table below:

_ ___
Orig Orig Dest Dest

Host Group Host Service Address Comment_ __ ___
fish nj/shore/fish bird dkserver nj/shore/bird default dkserver
fish nj/shore/fish bird listener nj/shore/BIRD default listener
fish nj/shore/fish bird dkserver nj/shore/plover plover dkserver
fish nj/shore/fish bird listener nj/shore/GULL GULL listener_ __ ___
bird nj/shore/bird fish dkserver nj/shore/fish default dkserver_ ___

_ ___

The originating group (of the calling endpoint) is used for security by the
dkserver receiving the call. The name used when starting a dkserver or listener
on a receiving host must match an address configured for the CPM-HS or the
host.

1-4 Introduction

Introduction
General

The CommKit Host Interface services are defined in detail in Chapter 4.

Installation and Removal

Administrators will find it easy to install and remove CommKit Host Interface
software because it uses standard facilities and follows conventions established
by the UNIX system.

Configuration and Maintenance

Administrators can reconfigure the number of virtual circuits into a host com-
puter with a special dkdaemon application. New services and servers can be
added or removed quickly and easily. The administrator can also monitor the
status of the interface and perform diagnostics on the hardware.

Print Spoolers

Printers can be connected to the network in a variety of ways. In some networks,
administrators connect a serial printer to a data switch TY port and access the
printer from a number of hosts.

uucp Services

The UNIX Basic Networking Utilities (BNU) can be configured to use CommKit
Host Interface software. This allows BNU commands (e.g., cu and uucp) to use
the network. BNU can be configured with one or more error detecting protocols
depending on the network topography.

File Sharing

The remote file sharing (RFS) feature can be configured to use the network. This
allows administrators to mount UNIX system files from other systems and use
these files on their own system.

Note: RFS is not supported by the NCR UNIX System.

Introduction 1-5

In
tr

od
uc

tio
n

General

Development Features

The host interface provides the following features to software developers who
want to make their applications available over networks.

Fiber Optic Link

The customer has access to a reliable fiber optic link that offers high throughput
and the necessary number of virtual circuits for most applications.

General Server

Developers can administer applications with a general purpose server, dkserver.
Applications can be written with minimal network considerations. The server
manages network protocol and network security issues.

High Performance Application Library

The CommKit Host Interface software library, libdk.so, is delivered as a
dynamic shared library object module. By writing applications that use the ser-
vices of libdk.so, most of the details of the interface can be hidden. These library
functions are described in Chapter 5.

Network Independent Application Library

CommKit Host Interface software also supports Transport Layer Interface (TLI).
Using this library allows development of applications that can run over other
networks without modification.

Document Overview

This guide is designed for the system administrator and is organized as follows:

Introduction.

Installation and Removal – step-by-step hardware and software procedures
and procedures for configuring the CPM-HS on the data switch node.

1-6 Introduction

Introduction
General

Control Tables – detailed description of building and editing the dkhosts,
dkdotab, srvtab, and dkuidtab control tables.

Administration – instructions for changing the hardware configurations,
administering uucp and remote file sharing (RFS), a summary of network
error messages, and printer sharing procedures.

Compatibility – information for the current CommKit Host Interface
software release operating with UNIX System V Release 4.0.

Manual Pages.

Reference Documentation

Tables 1-1 through 1-3 list the UNIX system, data switch, and the host interface
documentation that are referenced throughout this document.

Table 1-1: UNIX System Documentation
_ __

Title ISBN_ __
UNIX System V Programmer’s Guide: STREAMS 013947003-4
UNIX System V Programmer’s Reference Manual 013947029-8
UNIX System V System Administrator’s Reference Manual 013947011-5
UNIX System V System Administrator’s Guide 013947086-7
UNIX System V Network User’s and Administrator’s Guide 013933813-6
UNIX System V User’s Reference Manual 013947037-9_ __

_ __

Table 1-2: AT&T Host Interface Documentation
__

Document Select Code__
255-110-105Datakit II VCS Host Interface for AT&T 6386 WGS Installation and

Administration Guide__
255-110-115CommKit Host Interface Release 4.0/4.1 AT&T 386/486 Computers

Installation and Administration Guide
__

__

Table 1-2: continued on next page

Introduction 1-7

In
tr

od
uc

tio
n

General

Table 1-2: Continued
__

255-110-123CommKit Host Interface Release 3.3 StarServer FT Installation and
Administration Guide__

255-110-124CommKit Host Interface Release 4.2 NCR Series 3000 Computers Installation
and Administration Guide__

255-110-125CommKit Host Interface Release 4.3 StarServer FT Installation and
Administration Guide__

255-110-127CommKit Host Interface Release 4.4 AT&T 3B2 RISC Computer Systems
Installation and Administration Guide__

700-283Datakit II VCS Internal Interface Specification__

__

Table 1-3: AT&T Data Switch Documentation
_ __

Title Select Code_ __
BNS-1000 Administrator’s Guide 255-180-500
BNS-1000 Cabling Guide 255-180-606
BNS-1000 Commands Reference 255-180-200
BNS-1000 Installation Guide 255-180-100
BNS-1000 Messages Reference 255-180-201
BNS-2000 Node Reference 255-181-220
BNS-2000 System Description 255-181-110
Datakit II VCS Administrator’s Guide 255-113-500
Datakit II VCS Commands Reference 255-113-200
Datakit II VCS Installation Guide 255-113-100
Datakit II VCS Planning Guide 255-183-120
Datakit II VCS Messages Reference 255-113-201_ __

_ __

1-8 Introduction

Introduction
General

Glossary of Terms

The following list of acronyms and abbreviations are used in this document:

General Terms

BNU Basic networking utilities SAF Service access facility
ESD Electrostatic discharge ST Standard tip
LAN Local area network TLI Transport layer interface
NLPS Network layer provider service TPI Transport provider interface
NSU Networking support utilities Tx Transmitter
RFS Remote file sharing URP Universal receiver protocol
Rx Receiver WAN Wide area network

Display Conventions

This document contains sample displays that will help you understand the
described procedures.

Note: The displays in this document may differ from those on your terminal
screen because of product improvements made after this document was
completed. Your terminal screen accurately reflects the software on your
computer.

In command discussions, user input and computer response examples are shown
as follows:

System generated responses and messages are displayed in constant width
typeface with variable messages in italic typeface as shown here.

User input displayed on screen is displayed in constant width bold
typeface as shown here.

User input of the Delete and Enter keys are shown as follow: Delete Enter

Simultaneous entry of the control key with another key is shown as follows: Ctrl-d

The dollar sign is the default UNIX system prompt. The symbol # is the system
prompt for root. In some cases this symbol can indicate a comment line that you
may see when viewing files.

Introduction 1-9

In
tr

od
uc

tio
n

General

The data switch control computer system prompt may be either CC>or CC0>
depending on the release.

Format Conventions

Throughout this document UNIX and Datakit VCS commands are shown in bold
italic font; CommKit Host Interface commands, process names, program names,
and control tables are shown in bold type; file and directory names are shown in
italic type. References to man pages are shown in italic typeface [e.g.,
dkserver(1M)].

CommKit Host Interface Software Release/UNIX
System Version Information

Table 1-4 lists the current CommKit Host Interface software releases and the sup-
ported UNIX system version supported for each release.

Table 1-4: CommKit Host Interface Software Release/UNIX System Version

CommKit Host Interface Supported UNIX System
Software Release Version___
4.0v1, 4.0v2 SVR4.0 versions 1 and 2___
4.0v3, 4.0v4 SVR4.0 versions 1 and 2.1; SVR4.2 version 1___
4.1v1, 4.1v2, 4.1v3 SVR4.0 versions 3.0 and 3.1___
4.2v1, 4.2v2, 4.2v3, 4.2v4 SVR4.0 version 3.0, MP-RAS 2.0, 2.01, 2.02, 2.03, 3.00___
4.3v1, 4.3v2 SVR4.0 B22ipm10, B22ipm31, B32___
4.4v1, 4.4v2, 4.4v3 SVR4.0.3, 4.0.4___

1-10 Introduction

Introduction
Equipment Description

To add your computer to the data switch network, the following are required:

Computer System:

• Host interface module • Cartridge Tapes

• Ground Clips • Cable tie

Data switch node:

• CPM-HS module • Paddle board • Fiber optic cable

Host Interface Module

The host interface module – which is to be installed in the 3B2 computer – con-
tains the firmware required for the 3B2 computer to interface with the data
switch node. Refer to Figure 1-3.

A cable tie is used to hold the cables securely to the 3B2 computer cabinet to
prevent damage to the hardware and fiber optic cable. Ground clips are used to
ensure the host interface module is properly grounded.

Figure 1-3: Host Interface Module

Receive

Transmit

Introduction 1-11

In
tr

od
uc

tio
n

Equipment Description

CPM-HS Module and Paddle Board

The CPM-HS module (Figure 1-4) is installed in one of the slots at the front of the
data switch node. The CPM-HS module faceplate has a toggle switch, a reset but-
ton, and three LEDs.

The toggle switch enables/disables the computer from the network

The reset button resets the CPM-HS module after a fault condition occurs

The three LEDs give the state of the CPM-HS module.

The paddle board is installed in the same numbered slot as the CPM-HS module
at the rear of the data switch. The paddle board has transmit and receive connec-
tors for establishing a fiber optic link between the computer system and the data
switch node. The paddle board contains a loopback/normal mode toggle switch.
This switch should be left in the normal position; the loopback position is used
for local loopback testing.

Figure 1-4: CPM-HS Module and Paddle Board

CPM-HS MODULE

CONNECTOR

RECEIVER
CONNECTOR

TRANSMITTER

SWITCH
MODE TOGGLE
LOOP BACK/NORMAL

PADDLE BOARD

TOGGLE SWITCH

FAULT LED

DISABLE LED

ENABLE LED

RESET BUTTON

1-12 Introduction

Introduction
Equipment Description

Fiber Optic Cable

Fiber optic cable provides the connection between the computer system and the
data switch node. This thin, lightweight, flexible cable has many advantages over
an RS-232 cable, such as:

Greater bandwidth

Less noise or crosstalk

Can be used for longer distances

More security.

Figure 1-5 shows the fiber optic cable required to connect the computer to the
data switch node. This fiber optic cable requires standard tip (ST) connectors on
both ends.

Figure 1-5: Fiber Optic Cable (Dual Cable Shown)

62.5 MICRON FIBER

Introduction 1-13

In
tr

od
uc

tio
n

Equipment Description

Cartridge Tapes

The host interface package cartridge tapes hold the software that contains the
network interface commands, programs, diagnostics, and utilities that are neces-
sary for the host interface to work on your computer system.

The TLI Support software provides the UNIX system kernel support which
allows you to develop or utilize applications that rely on UNIX system TLI.
Examples of applications that rely on TLI are RFS and uucp (specifically the e
protocol).

Software Certificate

This release of the CommKit Host Interface software is copy-protected and
requires a Software Certificate Number and Software Key before it can be used.
The certificate included with your software contains your certificate number and
instructions for obtaining your personalized software key.

Customer Assistance

AT&T offers a complete package of support services to customers needing assis-
tance with installation, administration, operation, and maintenance of AT&T
Data Networking products. These support services are available on either a Con-
tract or a Time-and-materials basis.

For more information on these service offerings, or to establish a service account,
contact your AT&T account representative, or call 1-800-WE2-CARE during our
standard business hours (8AM – 5PM Eastern Time, Monday through Friday,
excluding holidays) and ask for the Data Networking Services Operations
department.

When you need assistance, call 1-800-WE2-CARE during the coverage period
selected when you established your service account. You will need to provide
your Service Account Number and identify the specific AT&T Data Networking
product for which you need assistance.

1-14 Introduction

Introduction
Equipment Description

Outside the United States, AT&T Data Networking products and support ser-
vices are provided by AT&T subsidiaries and authorized value-added resellers.
For more information, contact your sales representative.

Manual Pages

The manual pages are provided at the end of this document as a quick reference
to the CommKit Host Interface software commands.

The manual pages are divided into four sections each consisting of entries
arranged in alphabetical order.

_ __
Section Classification Description_ __

1 1C Communications
1M Maintenance_ __

3 3X Miscellaneous Routines_ __
4 4 File Formats_ __
7 7 Special Files_ __

_ __

Section 1C Application Programs – contains communication programs
which reside in the directory /opt/dk/bin.

Section 1M System Maintenance Commands – contains system mainte-
nance programs which reside in /opt/dk/sbin.

Section 3X Subroutines – describes the binary versions residing in system
libraries in the directory /usr/lib.

Section 4 File Formats – describes the structure of kinds of various files:
the possible contents of fields; the possible fields in each line.

Section 7 Special Files – describes the characteristics of each system file
that refers to an input/output device. The names in this section generally
refer to device names for the hardware, rather than to the names of the
special files.

Introduction 1-15

In
tr

od
uc

tio
n

Manual Pages

Format

All entries are based on a common format; some entries may not contain all
parts. The parts are listed below.

NAME gives the name of the entry and briefly states its purpose.

SYNOPSIS summarizes the use of the command being described. The con-
ventions used are:

_ ___
Bold typeface Enter these strings literally as they appear.
Italic Substitutable argument prototypes, program names,

files, and directories.
[] These brackets indicate an optional argument prototype.
{ } These brackets around a series of argument prototypes

indicate one of the arguments is mandatory. When an
argument prototype is given as "name" or "file," it
always refers to a file name.

−, +, or = These symbols indicate some sort of flag argument even
if they appear in a position where a filename could
appear._ ___

_ ___

DESCRIPTION describes the command.

EXAMPLE(S) gives examples of use.

FILES gives the file names that are built into the program.

SEE ALSO gives additional references.

DIAGNOSTICS discusses the diagnostic indications that may be produced.
Messages that are self explanatory are not listed.

WARNINGS points out potential problems.

BUGS gives known bugs and deficiencies.

1-16 Introduction

2 Installation/Removal

Preparation 2-1

Overview of Initial Installation 2-2

Install the CommKit Host Interface
Software 2-2
Pre-Installation Procedures 2-3
Initial Installation Procedures 2-4
Non-Prompted Mode (_dkhost_parms File) 2-4
General Installation 2-6
Detailed Installation 2-7
Upgrade Procedures 2-11

Install the CommKit TLI Package 2-16

Install Host Interface Hardware 2-17
Procedure 2-17

Install the CPM-HS Module in the Data
Switch Node 2-21

Table of Contents i

Table of Contents

Route the Fiber Optic Cable 2-22
General 2-22
Tools and Hardware 2-23
Conduit Installation 2-23

Connect the Fiber Optic Cable 2-24

Configure the Data Switch Control
Computer Database 2-25

Define Group Name 2-26
Define Address for dkserver Service 2-27
Define Address for the Listener 2-28
Configure the CPM-HS Module 2-30

Run Diagnostics on Host Interface
Module 2-31
Diagnostic Phases 2-32

Verify Operation 2-34
Verify the Operation of the dkdaemon Process 2-35
Verify the Operation of the dkserver Process 2-36
Verify Data Transfer Across the Interface 2-41
Verify Terminal Login Across the Interface 2-42
Verify Operation of the Remote Login Facility 2-43

ii Table of Contents

Table of Contents

Customize the Control Tables and
dkitrc 2-44
Where To Go From Here 2-45

Remove the CommKit TLI Package 2-45

Remove the CommKit Host Interface
Software 2-46
Non-Prompted Mode (_dkhost_parms File) 2-47
Prompted Mode 2-48

Table of Contents iii

Table of Contents

iv Table of Contents

Installation
Preparation

To add the AT&T 3B2 RISC System computer into an AT&T data switch net-
work, you must install the host interface software and hardware into your com-
puter, install hardware into the data switch, and make software configuration
changes for the CPM-HS module in the data switch node.

This chapter shows you how to:

Install the CommKit Host Interface hardware and software including TLI
in your computer.

Install and configure the CPM-HS module in the AT&T data switch node.

Remove the CommKit TLI Support package from your computer.

Remove the CommKit Host Interface software and hardware from your
computer.

This chapter is organized so that you can move from section to section for the
procedures required to install the CommKit Host Interface. Before adding any
hardware or software:

1 . Verify the correct UNIX System V Release is installed on your AT&T 3B2
RISC System computer that supports the current CommKit Host Interface
release. See Release Notes for further details.

2 . Have Datakit II VCS or BNS software loaded on your data switch node.

3 . Have a small slotted screw driver, a phillips screw driver, and your
computer’s user guide available.

4 . Have your data switch Maintenance Guide, Administrator’s Guide, and
Commands Reference Manual available.

5 . Have the following AT&T HELP telephone numbers available:

For the CommKit Host Interface and AT&T data switch node or
support contract information — 1-800-WE2-CARE*

For 3B2 Computer – 1-800-543-9935

* To establish a service arrangement and receive support on these products, please
contact your local SSC/CSC, your AT&T Sales Representative, or call the Data Net-
working Services Operations Group at 1-800-WE2-CARE.

Installation/Removal 2-1

In
st

al
la

tio
n

Overview of Initial Installation

The procedures for initial installation of the CommKit Host Interface are as fol-
lows:

1 . Install the CommKit Host Interface software and optional TLI Support
package on your computer system.

2 . Configure the CommKit Host Interface board.

3 . Install the CommKit Host Interface board in the system.

4 . Install the CPM-HS module in the AT&T data switch node.

5 . Route the fiber optic cables from the computer system to the data switch
node.

6 . Connect the fiber optic cable.

7 . Configure the CPM-HS module in the data switch node.

8 . Run diagnostics on the CommKit Host Interface board.

9 . Verify the operation of the hardware and software.

10 . Customize the control tables.

Each of these procedures is described in detail in a major heading in this chapter.

Install the CommKit Host Interface Software

The CommKit Host Interface software package consists of the CommKit Host
Interface software and a new version of the basic networking utilities (BNU).

Use the command pkginfo -l commkitto determine which version you may have
already installed in your system. The PSTAMP field contains the version.

To load the software on your computer system, you must have a sufficient
number of free blocks and inodes in the /etc/opt, /opt, root, /tmp, /usr, and /var/opt
file systems. You can determine the amount of free space on your computer sys-
tem by executing the df command which shows free inodes as free files.

2-2 Installation/Removal

Installation
Install the CommKit Host Interface Software

Approximately 8000 blocks are required in the root file system to rebuild the
UNIX System kernel and various configuration files. If /tmp is a separate file sys-
tem, it requires approximately 1000 blocks (which will be freed when the installa-
tion has been completed). Additionally, approximately 1000 blocks must be
available in the /usr and 8000 in the /var file systems.

Pre-Installation Procedures

Before installing CommKit Host Interface software, you must do the following:

1 . Review the Software Certificate for details on registering the copy-
protected CommKit software. Obtain the CommKit Host Interface
software key before proceeding with the installation.

2 . Provide the area, exchange, and host name of your system. (This is
optional and is used if you are customizing your server table. If you are,
contact your data switch administrator for help with this information.)
You will be prompted for this information if you wish to have customiza-
tion done automatically to the control files used by dkserver (see srvtab(4))
during installation.

3 . Remove any previously installed CommKit Host Interface software from
your computer system. (Refer to the section Remove the CommKit Host
Interface Software later in this chapter.)

4 . Install the Networking Support Utilities (nsu) package before proceeding
with the CommKit Host Interface software procedures.

5 . Decide if you want to install the CommKit Host Interface manual pages.
The manual pages take approximately 250 kbytes of disk space under the
/usr directory.

Note: The manual pages are not required for system operation.

6 . If your base UNIX System does not support the BNU over the AT&T data
switch network, the software installation will ask if you want to load the
new version of BNU.

Note: Unless you have installed your own version of BNU which you prefer to
keep, we recommend you install the BNU version included with the
CommKit Host Interface software.

Installation/Removal 2-3

In
st

al
la

tio
n

Install the CommKit Host Interface Software

Initial Installation Procedures

You can install the CommKit Host Interface Software by following the system
prompts or, for a more streamlined approach, you can create a /etc/_dkhost_parms
file (described below) specifying all installation parameters. If you use this file,
you will not be prompted during installation and removal.

Non-Prompted Mode (_dkhost _parms File)

If you create a file /etc/_dkhost_parms to specify the value of the installation
parameters, the installation/removal programs will not prompt for them. Table
2-1 lists the shell variables used by the installation/removal procedures.

Table 2-1: Installation/Removal Procedures – Shell Variables
_ __

Installation_ __
Variable Name Valid Value* Description_ __
CUSTOMIZE y, n Customize the server table_ __
AREA, EXCH, HOST user provided Used for server table customization_ __
MAN y, n Install online man pages_ __
REMOVE_TABLE_I y, n Remove the current version of tables during

package installation_ __
UUCP y, n Install updated version of uucp commands_ __
REMOVE_RC_I y, n Remove the /etc/init.d/dkitrc file during pack-

age installation

_ __
Removal_ __

REMOVE_TABLE_R y, n Remove the current version of tables during
package removal_ __

REMOVE_RC_R y, n Remove the /etc/init.d/dkitrc file during pack-
age removal_ __

_ __

*The installation and removal software looks only for the value y; any other value, including null,
will be interpreted as n, that is, do not remove, install, or customize. Any variable not included in the
_dkhost_parms file will default to n.

2-4 Installation/Removal

Installation
Install the CommKit Host Interface Software

Note: If any of the values AREA, EXCH, and HOST are missing, no
customization will be done.

Using the _dkhost_parms file will eliminate Steps 2 through 8 under Detailed
Installation. If this file is used, installation consists of the following:

1 . Perform the steps under General Installation

2 . Perform Steps 10 through 12 under Detailed Installation

3 . Run the dkregister command to enter the Software Certificate number
and Software Key after initial installation and before rebooting the system.

The installation and removal software will first validate the format of the
/etc/_dkhost_parms file. An example of a _dkhost_parms file is shown below:

Install the manual pages
MAN=y
Do not install the updated BNU programs
UUCP=n
Do not remove current version of customized tables during installation
REMOVE_TABLE_I=n
Do not remove current version of customized tables during removal
REMOVE_TABLE_R=n
Do not remove /etc/init.d/dkitrc during installation
REMOVE_RC_I=n
Do not remove /etc/init.d/dkitrc during removal
REMOVE_RC_R=n
Customize the server table
CUSTOMIZE=y
AREA=myarea
EXCH=myexch
HOST=myhost

This is an example of a _dkhost_parms file that:

Will install the manual pages online

Will not install the updated uucp commands

Will not remove the current version of the customized tables during
package installation or removal

Installation/Removal 2-5

In
st

al
la

tio
n

Install the CommKit Host Interface Software

Will not remove the current version of dkitrc in the /etc/init.d directory
during package installation or removal

Will customize the server tables (using myarea, myexch, myhost).

The variable name must start in the first column; this must be followed by an
equal sign; no spaces can be included before or after the equal sign. This must be
followed, in turn, by the value of the variable. Comment lines (starting with #)
are allowed. The installation/removal procedure will be terminated if the format
or content is invalid. If the /etc/_dkhost_parms file exists, the following message
will appear:

The installation parameter file /etc/_dkhost_parms exists.
This installation will be run in NON-PROMPTED mode using the
values specified in this file.

Hit key within the next 30 seconds if you do not wish to
install in NON-PROMPTED mode.

If you hit the Delete key, the following message will appear:

Installation will be run in PROMPTED mode.

Do you wish to continue the installation?
Enter y or n:

Enter n if you wish to examine the _dkhost_parms file.

General Installation

1 . Log on as root on the console. Throughout the procedures that follow,
system prompts and responses are shown in constant width typeface;
user entries are shown in bold typeface.

Note: Press the Enter key after every command you enter.

2-6 Installation/Removal

Installation
Install the CommKit Host Interface Software

2 . Insert the cartridge tape in the drive.

3 . Enter the pkgaddcommand to load the CommKit Host Interface software
package into your computer as shown in Figure 2-1, where:

-d is an option of pkgaddfor specifying the device option

commkit is the name of the package being installed.

4 . For non-prompted installation, continue with Steps 2 and 3 under Non-
Prompted Mode.

5 . For prompted installation, go to the section Detailed Installation.

Detailed Installation

If you are not using the /etc/_dkhost_parms file described previously, install the
CommKit Host Interface Software as described below:

1 . Follow the procedures under General Installation.

Figure 2-1: Install Software – Initial Dialogue Example

pkgadd -d /dev/rSA/qtape1 commkit

Installation in progress. Do not remove the medium.

Processing package instance <commkit> from </dev/rSA/qtape1>

CommKit Host Interface to AT&T Data Switch
(u3b2v4) 4.4 v3

Copyright (c) 1995 AT&T
All rights Reserved

Do you wish to install the manual pages?
Enter y or n: y
Manual pages will be installed.

Saving file /usr/lib/libdk.so in /usr/lib/libdk.so_predk

Installation/Removal 2-7

In
st

al
la

tio
n

Install the CommKit Host Interface Software

2 . If you want to install the manual pages, enter y as shown in Figure 2-1.

Note: The UNIX System is delivered with a BNU package which supports
CommKit, therefore, only the libdk.so file will be saved (under
libdk.so_predk) and restored to its original file name when the CommKit
package is removed.

3 . The system asks if you want to customize instances of Area/Exch and
Area/Exch/Host in the first and last fields in the files under
/etc/opt/dk/srvtab.

The current server table, /etc/opt/dk/srvtab, contains entries
with ’Area’, ’Exch’, and ’Host’. These occurrences
should be changed to the local names for your machine.
Would you like this customization to be done automatically
now? (You will be prompted to supply these local names.)
Enter y or n: y

4 . If you want to customize, enter y and continue with the responses as
shown on the following screen:

Enter Area: myarea
Enter Exch: myexch
Enter Host: myhost
Is this correct: myarea/myexch/myhost ? Enter y or n: y
Processing package information.
Processing system information.

32 package pathnames are already properly installed.
Verifying disk space requirements.

Installing CommKit Host Interface to AT&T Data Switch as <commkit>

2-8 Installation/Removal

Installation
Install the CommKit Host Interface Software

Installing part 1 of 1.
/dgn/DKPE
/dgn/X.DKPE
/etc/master.d/dkhs
/etc/master.d/dkmx
/etc/master.d/dkpe
/etc/master.d/dkty
/etc/master.d/dkux
/etc/master.d/dkx
/opt/dk/bin/dk
/opt/dk/bin/dkauth
/opt/dk/bin/dkcat
/opt/dk/bin/dkcu

•
•
•

[verifying class <man>]
Executing postinstall script.

5 . Enter your area, exch, host when directed to do so in the screen above,
and then y if the information is correct; n if it is not. You will be prompted
for the information again if you enter n.

6 . If you do not want to customize the files in /etc/opt/dk/srvtab at this time
enter n and the following screen will appear:

Reminder: Don’t forget to customize the /etc/opt/dk/srvtab after installation.

7 . If you answer y, the system will respond with the following:

Customizing the files under /etc/opt/dk/srvtab...

All instances of ’Area/Exch’ and ’Area/Exch/Host’ in the first and
last fields in the files under /etc/opt/dk/srvtab have been changed to:
myarea/myexch and myarea/myexch/myhost respectively.

Installation/Removal 2-9

In
st

al
la

tio
n

Install the CommKit Host Interface Software

8 . Enter the Software Certification Number and Software Key when
prompted (see below). If necessary, you can defer entry during
installation and manually run the dkregister command later when the
values are available. Refer to the Software Certificate and dkregister(1M)
manual page for details.

* CommKit Host Interface Registration *

You will now be prompted to enter your Software Certificate Number and
and Software Key. These values must be properly entered to unlock the
copy protected CommKit Software. Please refer to the Software
Certificate for details on obtaining a Software Key from the
WECARE Support Center (1-800-WE2-CARE).

You can continue without entering the values by typing "q" at
the appropriate prompt. If you bypass entry of the Software
Certificate Number and Software Key at this time, you must
manually run the dkregister command before the CommKit Software
may be used.

Please enter your Software Certificate Number.
Certificate number (enter "q" to quit) > xxxxxx-xxxxxx-xxxx

You entered "XXXXXX-XXXXXX-XXXX". Is this correct (y/n/q)? y

Please enter your Software Key.
Software Key (enter "q" to quit) > xxxxx-xxxx-xxxx-xxxx

You entered "XXXXX-XXXX-XXXX-XXXX". Is this correct (y/n/q)? y

2-10 Installation/Removal

Installation
Install the CommKit Host Interface Software

Registration Completed Successfully

Updating /etc/ttysrch
Updating edittbl

Installing dkpe module
Installing dkhs module
Installing dkux module
Installing dkty module
Installing dkx module
Installing dkmx module

Installation of <commkit> was successful.

*** IMPORTANT NOTICE ***
If installation of all desired packages is complete
the machine should be rebooted in order to
ensure sane operation. Execute the shutdown
command with the appropriate options and wait for
the "Console Login:" prompt.

9 . The software installation is now complete.

10 . Remove the cartridge tape.

11 . If you will be installing TLI, proceed to the section Install the CommKit TLI
Package, otherwise, enter the following commands to shut down the
system so you can install the host interface board in your computer:

cd /
shutdown -y -g0 -i0

Upgrade Procedures

If you have a version of the CommKit Host Interface software installed on your
computer and you want to install a later version, you must perform the follow-
ing procedures.

Installation/Removal 2-11

In
st

al
la

tio
n

Install the CommKit Host Interface Software

1 . Log on as root on the console.

Note: Press the Enter key after every command you enter.

2 . Remove the TLI package if it is installed (refer to the section Remove the
CommKit TLI Package later in this chapter).

3 . Remove the CommKit Software (refer to the section Remove the CommKit
Host Interface Software later in this chapter).

4 . Continue with Steps 2 and 3 under General Installation.

5 . Continue with Steps 2 and 3 under Detailed Installation.

6 . If you want to customize instances of Area/Exch and Area/Exch/Host in
the first and last fields in the /etc/opt/dk/srvtab files, enter y as shown in
Step 4 under Detailed Installation.

7 . If you saved the customized tables (dkhosts, dkdotab), and the service
files under /etc/opt/dk/srvtab directory during removal of the previous
release of the CommKit Host Interface software, the following will be
displayed:

Do you want to retain your current versions of files /etc/opt/dk/dkhosts,
/etc/opt/dk/dkdotab, /etc/opt/dk/dkgroups, and
all files under /etc/opt/dk/srvtab directory (y or n)?

If your srvtab file is a regular file, the following is displayed instead:

Do you want to retain your current versions of files /etc/opt/dk/dkhosts,
/etc/opt/dk/dkdotab, /etc/opt/dk/dkgroups, and
/etc/opt/dk/srvtab (y or n)?

8 . If the saved files are different than the ones on the machine, the new ver-
sion of control tables will be installed under the same name with the suffix
_4xvX. This gives you the opportunity to compare the delivered files with
your own version of the files. These files are /etc/opt/dk/dkdotab_4xvX,
/etc/opt/dk/dkhosts_4xvX, /etc/opt/dk/dkgroups_4xvX, and files with the suffix

2-12 Installation/Removal

Installation
Install the CommKit Host Interface Software

_4xvX under /etc/opt/dk/srvtab directory. If your /etc/opt/dk/srvtab is a regu-
lar file, the delivered files will be installed in the /etc/opt/dk/srvtab_4xvX
directory.

Note: /etc/opt/dk/dkgroups is introduced in Release 4.4v3; during an
upgrade from an earlier version, the system will install a default
dkgroups file.

Once you have finished comparing and making changes to your files, you
should remove the suffix files (_4xvX) to insure a clean removal of the
software if you ever wanted to remove the interface.

Note: The suffix _4xvX (where xvX represents the release and version number;
e.g., _44v2) used for the delivered files will change for each new release
or version of the CommKit Host Interface software.

Note: If a control table file has not changed, the system will not create a _4xvX
file for that file. If you do not see a _4xvX version of a file, it means that
the new control table file was identical to the old version which was,
therefore, not saved.

9 . If you saved the /etc/init.d/dkitrc file during the removal of the previous
release of CommKit Host Interface software, the following will be
displayed:

Do you want to retain your current version of /etc/init.d/dkitrc (y or n)?

If you answer y, the file /etc/init.d/dkitrc will not be overwritten and the
delivered file will be installed as /etc/init.d/dkitrc_4xvX. This allows you
to compare your version with the delivered file.

10 . The system will then respond with messages similar to the following:

Installation/Removal 2-13

In
st

al
la

tio
n

Install the CommKit Host Interface Software

Processing package information.
Processing system information.

29 package pathnames are already properly installed.
Verifying disk space requirements.

Installing CommKit Host Interface to AT&T Data Switch as <commkit>

Installing part 1 of 1.
/dgn/DKPE
/dgn/X.DKPE
/etc/master.d/dkhs
/etc/master.d/dkmx
/etc/master.d/dkpe
/etc/master.d/dkty
/etc/master.d/dkux
/etc/master.d/dkx
/opt/dk/bin/dk
/opt/dk/bin/dkauth
/opt/dk/bin/dkcat
/opt/dk/bin/dkcu

•
•
•

The following delivered control table files will be saved
with suffix "_44v2":

/etc/opt/dk/dkhosts /etc/opt/dk/srvtab/do
/etc/opt/dk/srvtab/pupu /etc/opt/dk/srvtab/rx
/etc/opt/dk/srvtab/whoami

Installing the delivered file /etc/init.d/dkitrc
in /etc/init.d/dkitrc_44v2

Reminder: Don’t forget to customize the /etc/opt/dk/srvtab after installation

/etc/opt/dk/dkuidtab will NOT be overwritten by the install procedure.

Note: The dkuidtab will be saved if you saved the tables during the removal
process. Refer to the section Remove the CommKit Host Interface Software
later in this chapter.

11 . Enter y when asked to retain the Software Certificate and Key values:

2-14 Installation/Removal

Installation
Install the CommKit Host Interface Software

* CommKit Host Interface Registration *

A valid CommKit registration record has been found on your system.
Do you wish to retain the existing Software Certificate Number
and Software Key values? (YyNn)? y
Updating /etc/ttysrch
Updating edittbl

Installing dkpe module
Installing dkhs module
Installing dkux module
Installing dkty module
Installing dkx module
Installing dkmx module

Installation of <commkit> was successful.

*** IMPORTANT NOTICE ***
If installation of all desired packages is complete
the machine should be rebooted in order to
ensure sane operation. Execute the shutdown
command with the appropriate options and wait for
the "Console Login:" prompt.

12 . The software installation is now complete.

13 . Remove the cartridge tape.

14 . If you have more than one board installed or are not using the default
number of channels (64) for each interface, you must customize the script
file, /etc/init.d/dkitrc. Refer to the section dkitrc Script File in Chapter 4.

16 . If you are going to install TLI, proceed to the next section, otherwise, enter
the following command to reboot the system:

shutdown -y -i6 -g0

Installation/Removal 2-15

In
st

al
la

tio
n

Install the CommKit TLI Package

This package is optional. If you do not wish to install it, go to the next section.
The CommKit Host Interface software must be installed before the TLI package.
Refer to Using the TLI Package in Chapter 4 and the dktli(7) manual page.

To install the TLI Package:

1 . Log on as root.

2 . Insert a cartridge tape in the drive.

3 . Enter the pkgaddcommand to load the TLI package:

pkgadd -d /dev/rSA/qtape1 cktli

-d is an option of pkgaddfor specifying the device option

cktli is the name of the package being installed.

4 . Once the software has been installed, remove the tape.

5 . If you are going to install the host interface hardware, shut down the sys-
tem and proceed to the next section:

cd /
shutdown -y -i0 -g0

6 . If the host interface hardware is already installed, reboot the system:

cd /
shutdown -y -i6 -g0

2-16 Installation/Removal

Installation
Install Host Interface Hardware

The CommKit Host Interface Software must be installed before the host interface
board can be installed. Read this entire section before installing the board.

Procedure

If the 3B2 computer is running, turn it off as described in the 3B2 Owner/Operator
Manual and unplug the power cord. Install the host interface board:

Note: The host interface board must be installed in the next available connector
slot with two vertical slots open. You cannot skip a backplane slot.

Note: You may have to rearrange previously installed boards before installing
the host interface board. If so, refer to the documentation provided with
the boards you will be moving.

Figure 2-2: 3B2/500 Cabinet Backplane Slots

Filler Plates

6

4

2

1

MEM1

MEM0

4

5

3

BUB1
BUB0

VCACHE

Circuit pack
extractor tool

Ground
Clips

Ground
Strap

Installation/Removal 2-17

In
st

al
la

tio
n

Install Host Interface Hardware

1 . Refer to Figures 2-2 and 2-3 for typical 3B2 equipment.

2 . Remove the ground strap by removing the screws holding it to the filler
plate and host interface board. Push and turn the spring-loaded screw a
quarter turn as shown in Figures 2-2 and 2-3.

Caution: Do not install the host interface board into a performance slot on
the 3B2/500 or 3B2/600. Doing so may damage both the 3B2 and
the host interface board.

Caution: Handle the host interface board by the edges only.

Figure 2-3: 3B2/600 Cabinet Backplane Slots

Performance
Slots

I/O Slots

11

9

7

5

3

1

12

10

8

6

4

2

VCACHE

BUB3

BUB2

BUB1

BUB0

PWR only

System board

Circuit Pack Extractor Tool

Ground clips

Spring-load screw
Ground strap

Filler plates

3 . Remove the appropriate filler plates to install the host interface board.

4 . If the filler plate covers two backplane slots and you need only one of
them:

a . Break the filler plate in half

2-18 Installation/Removal

Installation
Install Host Interface Hardware

b . Install half over the slot not being used

c . Save the other half for possible future use.

Warning: Failure to replace the filler plates over the unused slots will
disrupt airflow and may cause radiation noncompliance with Class
B limits of Subpart J, Part 15 of FCC rules.

5 . Insert the host interface board into the selected slot with the component
side up as shown in Figure 2-4.

Figure 2-4: Inserting the Host Interface Board

Host Interface Board

6 . Replace the ground strap and install the ground clip as shown in Figure
2-5.

Installation/Removal 2-19

In
st

al
la

tio
n

Install Host Interface Hardware

Note: Install the ground clip at the outside end of the faceplate opposite the
ground strap.

Figure 2-5: Host Interface Board Installed

Oval Access
Hole

Cable Tie

Cable

Ground Clip

Transmit

Receive

Host Interface
Board

Connect the fiber optic cable as described in the section Connect the Fiber Optic
Cable later in this chapter.

2-20 Installation/Removal

Installation
Install the CPM-HS Module in the Data Switch
Node

The CPM-HS module will be installed in the data switch node. Refer to the
appropriate AT&T Installation and Maintenance Guides (see Chapter 1, Table 1-
3) for additional details.

To install the CPM-HS in the node:

1 . Face the data switch cabinet from the rear. Slide the paddle board into one
of the available backplane slots. (See Figure 2-6).

Figure 2-6: Typical Rear View of a Data Switch Cabinet

8
9

10

11

12

13

14

15

E3

0
1

2
3
4
5
6
7

E5

DATAKIT II VCS

Paddleboard

2 . Connect the paddle board to the chassis.

3 . Face the cabinet from the front. Slide the CPM-HS module into the same
number slot as the paddle board. (See Figure 2-7).

Installation/Removal 2-21

In
st

al
la

tio
n

Install the CPM-HS Module in the Data Switch Node

Figure 2-7: Typical Front View of a Data Switch Cabinet

CPM-HS Module

4 . Enable the CPM-HS module by moving the module faceplate switch to the
ENABLE position.

Route the Fiber Optic Cable

General

The fiber optic cable may be run in overhead ceilings, in subfloor cable runs, and
in riser shafts. Before routing the fiber optic cable, you must connect rubber caps
to each end of the cable. This will protect the fiber optic cable from dirt or dust
during installation.

2-22 Installation/Removal

Installation
Route the Fiber Optic Cable

When routing the fiber optic cable, you should keep the fiber optic cable away
from copper riser cables. If you are unable to do so, install an inner liner (con-
duit) to keep the cables separated.

Carlon EFT corrugated tubing (or equivalent) may be used to separate the fiber
optic cable from copper riser cables. This corrugated tubing can be used in short
lengths and can be formed into bends.

Caution: Fiber optic cables are not intended for use in air handling ceiling
areas unless installed in approved conduit.

When installing the fiber optic cable, you should avoid tight pulls or tugs against
sharp corners of framework. If fiber optic cables are to be installed around sharp
edges of cabinetry or framework, cover the edges with split tubing or similar
material. When lacing or securing the fiber optic cable, use flat lacing twine or
cable ties; do not tie the fiber optic cable too tight because microbending losses
may occur. Bundles of cables should not hang or protrude into the work space.
Wrap the cables into loops not less than three inches in diameter, although
short-term handling into loops of one-inch diameter is satisfactory.

Tools and Hardware

Tools and hardware (such as fish wire, woven cable grips, or rope) used to install
copper wire and cable in building duct and conduit systems are satisfactory for
use in installing fiber optic cable. If woven cable grips are used with fiber optic
cables, tape them to the cable jacket before pulling the cable.

Conduit Installation

The fiber optic cables were not designed for conduit installation, but they may be
installed in a conduit if the following applies:

1 . Only two fiber optic cables into a single conduit

2 . The pull force of the fiber optic cable does not exceed 50 pounds per cable.

Fiber optic cables should not be pulled through more than four 90-degree bends.
If the conduit run contains more than four 90-degree bends, provide intermedi-
ate help points. The minimum recommended conduit bend radius is 4½ inches.

Installation/Removal 2-23

In
st

al
la

tio
n

Route the Fiber Optic Cable

Caution: Never pull the cable around a sharp corner, such as a junction box
connection.

Warning: Do not install fiber optic cable in conduits with less than ¾-inch
inside diameter.

Pulling tension during conduit installation can be minimized by the following:

1 . The fiber optic cable should enter the end of the conduit nearest the
curved sections.

2 . Ducts or conduits should be free of foreign obstructions before cable ins-
tallation.

3 . The following lubricants are recommended for PVC cabling:

— Polywater A&C — American Polywater Corp.

— Hydralube Blue — Arnco Equipment Co.

— Neutral soft soap

— Talcum powder.

Note: Do not use a petroleum-based lubricant on PVC cables.

Connect the Fiber Optic Cable

The length of the fiber optic cable between the node (CPM-HS module) and the
computer system (CommKit Host Interface board) should not exceed 1 kilome-
ter.

Connect the fiber optic cable as follows (refer to Figure 2-8):

1 . Face the data switch cabinet from the rear. The receiver (Rx) is the connec-
tor at the top and the transmitter (Tx) is the bottom connector.

2-24 Installation/Removal

Installation
Connect the Fiber Optic Cable

2 . Remove the rubber caps from the fiber optic cable and the Transmitter
and Receiver connectors of the Host Interface Board. Save the caps for
later use.

3 . Connect the Transmitter side of the Host Interface board in the computer
to the Rx side of the CPM-HS module in the data switch node.

4 . Connect the Receiver side of the Host Interface board in the computer to
the Tx side of the CPM-HS module in the data switch node.

5 . Press the ends of the cable tie together. The holes in the ends of the tie
should line up with the hole near the rear of the cabinet.

6 . Place the screw through the tie and into the hole near the rear of the
cabinet. Tighten the screw to support the cabinet.

Figure 2-8: Fiber Cable Connections

Tx

Rx

Rx

Tx

CPM-HS Host Interface Board

Configure the Data Switch Control Computer
Database

Once the CPM-HS module is plugged into the data switch node, the CPM-HS
module must be configured from the data switch node console. Refer to the
appropriate AT&T Commands Reference documentation (Chapter 1, Table 1-3)
for more information.

Installation/Removal 2-25

In
st

al
la

tio
n

Configure the Data Switch Control Computer Database

To configure the node, you must:

1 . Define the group name

2 . Define the address* for the dkserver service

3 . Define the address for the listener

4 . Enter the CPM-HS module.

To accomplish these steps, conduct the dialogues shown below.

Note: Dialogues differ depending on the AT&T data switch and release
number. The figures show typical dialogues for R2.0 of the Datakit II
VCS and BNS data switches. Significant differences for Datakit II VCS
R1.0 are described as necessary.

Define Group Name

Conduct the dialogue as shown below (responses based on Figure 1-2):

CC0> enter group
GROUP [up to 8 chars]: bird
TYPE [local, trunk: +(local)]: local
DIRECTION [originate, receive, 2way]: 2way
DEVICE OR HOST [up to 8 chars]: bird
PASSWORD [up to 8 chars, none: +(none)]: none
ROUND ROBIN SERVICE [per_port, per_module, none: +(none)]: none
GROUP [up to 8 chars]: Delete

CC0>

The entries are described below:

group Defines the name of the computer system as known by the data
switch. This is bird in the example shown in the screen above.
(Enter Delete to end the session.)

* The term address in the BNS and R2.0 of the Datakit II VCS data switch is the same
as the term name in R1.0 of the Datakit II VCS data switch. When using the enter ad-
dresscommand to define the name, select mnemonic as the type. Refer to the exam-
ples that follow.

2-26 Installation/Removal

Installation
Configure the Data Switch Control Computer Database

type The computer system is a local connection to the data switch.
Enter local.

direction The fiber interface may be used to originate and receive calls
through the CPM-HS module, therefore, it is 2way.

device or
host

We recommend assigning the same name as the name of the
computer system.

password Passwords are not used with the CPM-HS module.

round robin We do not recommend using per_port. Enter either per_module
(for multiple boards) or none.

Define Address for dkserver Service

The server name used by dkserver must match an address configured for the
CPM-HS or host. (The following example is based on the example shown in
Chapter 1, Figure 1-2 and uses the default dkserver name.) Conduct the dialo-
gue as shown in the screen below:

CC0> enter address
LEVEL [local, area, exchange, local, speedcall: +(local)]: local
TYPE [x121, mnemonic, both: +(mnemonic)]: mnemonic
MNEMONIC ADDRESS [up to 8 chars]: bird
PAD SUPPORT [yes, no: +(no)]: Enter

DIRECTORY ENTRY [up to 30 chars double quoted, none: +(none)]:
"name of the default dkserver"
GROUP(S) [up to 4 groups separated by commas, none: +(none)]:
bird
ORIGINATING GROUP NAME SECURITY PATTERN(S)
[comma-separated pattern list, same_as, none: +(none)]: Enter

INITIAL SERVICE STATE [in, out: +(out)]: in
LEVEL [network, area, exchange, local, speedcall: +(local)]: Delete

CC0>

Note: The command enter addressin the BNS or R2.0 of the Datakit II VCS data
switch is analogous to the enter namecommand in R1.0 of the Datakit II
VCS.

Installation/Removal 2-27

In
st

al
la

tio
n

Configure the Data Switch Control Computer Database

level Enter local (R2.0) or Delete to end the session.

type The addressing type is mnemonic (R2.0 and later) or standard
(R1.0).

mnemonic
address/name

This is the local service address (name R1.0) used by the com-
puter system and it must be the same as the server name that is
assigned to the dkserver.

PAD This is not used (R2.0).

directory
entry

This is a 30-character description of the dkserver enclosed in
double quotes.

group Enter the name of the data switch group used to direct calls to
your computer system.

security pat-
tern

The originating group name security feature allows the data
switch to restrict calls for this host to a select group of data
switch originating groups. Since the srvtab file may also be used
to restrict incoming calls, Enter is used to disable this feature.

service state The local service address must be in service for the computer sys-
tem to originate and receive calls (R2.0).

restore to
service

The local service address must be in service for the computer sys-
tem to originate and receive calls (R1.0).

If you do not intend to use TLI support, go to the section, Configure the CPM-HS
Module, later in this chapter. If TLI Support is to be used, continue with the next
section, Define Address for the Listener.

Define Address for the Listener

The server name used by the listenermust match an address configured for the
CPM-HS or host. In general, the server name for the listenerwill be the upper
case version of the host name (uname). For example (in Figure 1-2), host = bird;
server name for listener = BIRD. Conduct the dialogue as shown in the following
screen:

2-28 Installation/Removal

Installation
Configure the Data Switch Control Computer Database

CC0> enter address
LEVEL [local, area, exchange, local, speedcall: +(local)]: local
TYPE [x121, mnemonic, both: +(mnemonic)]: mnemonic
MNEMONIC ADDRESS [up to 8 chars]: BIRD
PAD SUPPORT [yes, no: +(no)]: Enter

DIRECTORY ENTRY [up to 30 chars double quoted, none: +(none)]:
"name of the listener"
GROUP(S) [up to 4 groups separated by commas, none: +(none)]:
bird
ORIGINATING GROUP NAME SECURITY PATTERN(S)
[comma-separated pattern list, same_as, none: +(none)]: Enter

INITIAL SERVICE STATE [in, out: +(out)]: in

LEVEL [network, area, exchange, local, speedcall: +(local)]: Delete

CC0>

level Enter local (R2.0) or Delete to end the session.

type The addressing type is mnemonic (or standard for Datakit II
VCS R1.0 only).

mnemonic
address/name

Enter the local server address (name R1.0) used by the listener.
This is GULL in this example.

PAD This is not used (R2.0).

directory
entry

This is a 30-character description of the listener enclosed in dou-
ble quotes.

group Enter the name of the data switch group that is used to direct
calls to your computer system.

security pat-
tern

The originating group-name security feature allows the data
switch to restrict calls for this host to a select group of data
switch originating groups. Since the srvtab file may also be used
to restrict incoming calls, Enter is used to disable this feature.

service state The local service address must be in service for the computer sys-
tem to originate and receive calls (R2.0).

restore to
service

The local service address must be in service for the computer sys-
tem to originate and receive calls (R1.0).

Installation/Removal 2-29

In
st

al
la

tio
n

Configure the Data Switch Control Computer Database

Configure the CPM-HS Module

Conduct the dialogue as shown in the screen below:

CC0> enter cpm
MODULE ADDRESS [2-127]: 6
COMMENT [up to 60 chars double quoted]:
"fiber interface"
HARDWARE TYPE [422, hs: +(hs)]: hs
NUMBER OF CHANNELS [2-512: +(32)]: 64
SINGLE OR MULTIPLE GROUP(S) [single, multiple: +(single)]: multiple
GROUP [up to 8 chars]: bird
CHANNEL RANGE [low-high: (+2-63)]: 2-30
ENDPOINT NUMBER OR RANGE [0000-9999, none: +(none)]: none
105 Channels Left to Be Specified
GROUP [up to 8 chars]: bear
CHANNEL RANGE [low-high]: 31-63
ENDPOINT NUMBER OR RANGE [0000-9999, none: +(none)]: none

MODULE ADDRESS: Return

CC0> restore cpm 6
CC0>

address Check the data switch cabinet for the slot number of the CPM-
HS module to which the host is connected. Enter that slot
number; in this example the CPM-HS module is in slot 6.

comment A description of the entry.

hardware
type

Host’s fiber interface hardware always connects to the CPM-HS.

number of
channels

The default number of channels for the CommKit Host Interface
software is 64. Enter the same number as the number of chan-
nels configured on your computer system. To change the
number of channels, refer to Chapter 4.

Single or
multiple

Enter single, or multiple if channel groups are used.

group Enter the name of the data switch node channel group being
used to direct calls to your computer system. Enter additional
channel groups as required by your configuration (refer to the
section dkgroups in Chapter 3).

2-30 Installation/Removal

Installation
Configure the Data Switch Control Computer Database

Endpoint Not used (R2.0).

Note: The CPM-HS module must be restored to service before use.

Run Diagnostics on Host Interface Module

The host interface module is tested by running off-line diagnostics. Use these
diagnostics to locate hardware problems in the 3B2 computer.

Caution: Diagnostic phases should only be run by an experienced user. If
you have a system failure and are not confident about running
diagnostics, call your AT&T Service Representative or authorized
dealer.

Diagnostics are run from the 3B2 firmware mode. You must be logged in as root
on the 3B2 to bring the system to the firmware mode. To run the diagnostics:

1 . Go to the firmware mode by conducting the following dialog:

/etc/shutdown -y -i5
FIRMWARE MODExxxxxx
Enter name of program to execute [/etc/system]: dgmon

Note: Enter your password (shown as xxxxxx above) when the FIRMWARE
MODEprompt appears. The password will not be echoed onscreen.

2 . Boot the system by executing the dgmon program from the hard disk.
Refer to the 3B2 RISC Systems UNIX System V R4.0.3 Owner/Operator
Manual.

Installation/Removal 2-31

In
st

al
la

tio
n

Run Diagnostics on Host Interface Module

3 . Run the diagnostics by entering:

DGMON>dgn dkpe ph=1-15
DGMON>

Note: For phases 13– 15 to pass, the fiber optic cable must be connected to the
data switch node.

4 . Quit the diagnostics mode by entering q at the DGMON>prompt above.

If a diagnostic failure occurs, verify that the fiber optic cable is properly con-
nected between the 3B2 Computer and the data switch node and that the CPM-
HS module is properly inserted into the correct data switch slot and that it is in
service. If you continue to experience diagnostic failures, refer to the section Cus-
tomer Assistance in Chapter 1.

Diagnostic Phases

Table 2-2: Diagnostic Phases
__

Phase Type Description Phase Type Description__
1 Demand CIO Sanity Test 9 Demand Programmed I/O Byte__
2 Demand PCSR Write/Read Test 10 Demand Programmed I/O Word__
3 Demand Upper RAM Write/Read Test 11 Demand DMA Transfer Byte Test__
4 Demand Lower RAM Write/Read Test 12 Demand DMA Transfer Word Test__
5 Demand CPU Chip Select Test 13 Normal FIB Internal Loop__
6 Demand CPU DMA Internal Test 14 Demand FIB External Loop__
7 Demand CPU Timer Test 15 Normal DMA FIB External Loop__
8 Demand CPU Interrupt Controller__

__

Table 2-2 shows the diagnostic phase descriptions for 3B2 RISC computer. The
following screen shows a typical output for the diagnostic phases.

2-32 Installation/Removal

Installation
Run Diagnostics on Host Interface Module

DGMON>dgn dkpe ph=1-15
<<< DIAGNOSTIC MODE >>>

DKIT Phase: 1 Test: Common I/O Sanity Type: DEMAND
Time Taken = 1 second
*** DKIT Phase: 1 Diagnostic PASSED ***

DKIT Phase: 2 Test: Control and Status Register Type: DEMAND
Time Taken = 1 second
*** DKIT Phase: 2 Diagnostic PASSED ***

DKIT Phase: 3 Test: Upper RAM Type: DEMAND
Time Taken = 2.5 minutes
*** DKIT Phase: 3 Diagnostic PASSED ***

DKIT Phase: 4 Test: Lower RAM Type: DEMAND
Time Taken = 2.5 minutes
*** DKIT Phase: 4 Diagnostic PASSED ***

DKIT Phase: 5 Test: Central Processor Unit Type: DEMAND
Time Taken = 1 second
*** DKIT Phase: 5 Diagnostic PASSED ***

DKIT Phase: 6 Test: Central Processor Unit Type: DEMAND
Time Taken = 1 second
*** DKIT Phase: 6 Diagnostic PASSED ***

DKIT Phase: 7 Test: Central Processor Unit Type: DEMAND
Time Taken = 1 second
*** DKIT Phase: 7 Diagnostic PASSED ***

DKIT Phase: 10 Test: Central Processor Unit Type: DEMAND
Time Taken = 1 second
*** DKIT Phase: 10 Diagnostic PASSED ***

DKIT Phase: 9 Test: BYTE Programmed I/O Type: DEMAND
Time Taken = 1 minute
*** DKIT Phase: 9 Diagnostic PASSED ***

DKIT Phase: 10 Test: WORD Programmed I/O Type: DEMAND
Time Taken = 1 minute
*** DKIT Phase: 10 Diagnostic PASSED ***

DKIT Phase: 11 Test: BYTE DMA Transfer Type: DEMAND
Time Taken = 1 second
*** DKIT Phase: 11 Diagnostic PASSED ***

DKIT Phase: 12 Test: WORD DMA Transfer Type: DEMAND
Time Taken = 1 second
*** DKIT Phase: 12 Diagnostic PASSED ***

DKIT Phase: 13 Test: FIB Internal Loop Around Type: NORMAL
Time Taken = 3 seconds
WARNING - THE FIBER OPTIC CABLE MUST BE CONNECTED!

Installation/Removal 2-33

In
st

al
la

tio
n

Run Diagnostics on Host Interface Module

*** DKIT Phase: 13 Diagnostic PASSED ***

DKIT Phase: 14 Test: FIB External Loop Around Type: DEMAND
Time Taken = 3 seconds
WARNING - THE FIBER OPTIC CABLE MUST BE CONNECTED!
*** DKIT Phase: 14 Diagnostic PASSED ***

DKIT Phase: 15 Test: DMA - FIB External Loop Around Type: NORMAL
Time Taken = 5 seconds
WARNING - THE FIBER OPTIC CABLE MUST BE CONNECTED!!
*** DKIT Phase: 15 Diagnostic PASSED ***

DKIT 0 (IN I/O BUS SLOT 2) DIAGNOSTICS PASSED

Verify Operation

Now that you have installed the CommKit Host Interface software and hardware
into your computer and installed the hardware in the AT&T data switch node
and configured the node, you are ready to verify that your computer can com-
municate successfully with that node. You must be logged in as root on your
computer, and the system must be in the multi-user mode (init state 2). The fol-
lowing is an overview of these step-by-step procedures:

1 . Verify the operation of the dkdaemon process.

2 . Verify the operation of the dkserver process.

3 . Verify data transfer across the interface.

4 . Verify terminal login across the interface.

5 . Verify operation of the remote login facility.

2-34 Installation/Removal

Installation
Verify Operation

Verify the Operation of the dkdaemon Process

To start the newly-installed interface, the interface daemon process must be
started. The interface daemon (/opt/dk/sbin/dkdaemon) is started automatically
whenever the system enters init state 2. See the manual page dkitrc(1M) for more
details on what processes are started automatically at init state 2.

If you have more than one CommKit Host Interface board installed, you can start
separate daemon processes for each interface by using the following command
where n is the interface board number:

/opt/dk/sbin/dkdaemon -i n

If the -i option is not used with the dkdaemon command, a single daemon pro-
cess services all interfaces. If the number of channels that you wish to configure
is not the same for each interface, you must have separate daemon processes for
each interface.

1 . Check to see if the daemon process is running by using the pscommand.
If the process is not running, manually start the dkdaemon by entering
the following where nChannels is the number of channels that you wish to
configure on your interface [dkdaemon(1M)].

/opt/dk/sbin/dkdaemon [-c nChannels] -i n

Note: If you omit the -c nChannels option, the daemon will default to 64 chan-
nels. In either case, the number of channels must be the same as the
number configured on the CPM-HS module or incoming and outgoing
call attempts may fail.

2 . Verify that the daemon is running, look in the log file by entering the fol-
lowing command:

Installation/Removal 2-35

In
st

al
la

tio
n

Verify Operation

tail /var/opt/dk/log/dkdaemonlog

The system will respond with a series of log entries indicating the inter-
face is starting or ACTIVE. Refer to the dkdaemon (1M) manual page for
information regarding the log entries.

3 . After you start the daemon successfully, a message similar to the follow-
ing will be displayed on the data switch console where XX is the slot
number of the CPM-HS module that connects your computer to the data
switch node.

<date><time> NODE=<nodename>
8620 MODADR=XX MODTYPE=cpmhs
REPORT STATUS: unixcsc: Host is active

Verify the Operation of the dkserver Process

To test the newly-installed interfaces, a server process must be started for each
hardware interface. This server (/opt/dk/sbin/dkserver) is started automatically
whenever the system enters init state 2. See the manual page dkitrc(1M) for more
details.

Note: Each hardware interface that is to receive calls from the AT&T data net-
work switch requires its own server process.

Check to see if the server process is running by using the pscommand. If the
server process is not running, manually start the server by performing the fol-
lowing steps:

1 . At the data switch, verify that the CPM-HS is in service by using the verify
command shown below (for a CPM-HS module in slot 8):

2-36 Installation/Removal

Installation
Verify Operation

CCO> verify cpm 8
93-04-07 16:06:43 NODE=ocean

M verify cpm 8
MODULE ADDRESS: 8
MODULE TYPES: cpmhs NCHLS: 64
SERVICE STATE: in SERVICE TYPE: unix
HOST: plover

COMMENT:

BILLING PERIODIC BILLING
off off

GROUP CHNLS CHNL RANGE EPN CUG PROFILE
plover 62 2-63

2 . If the output of the verify command shows that the CPM-HS module is out
of service, the module must be restored to service by entering the follow-
ing command on the data switch node console where XX is the number of
the slot to which the CPM-HS module is located in the data switch node:

CCO> restore cpm XX

3 . Verify that the server name to be used by dkserver is in service by using
the verify command shown below [for a server named plover (on R1.0 ver-
ify name plover)]:

Installation/Removal 2-37

In
st

al
la

tio
n

Verify Operation

CCO>verify add local plover
88-04-20 14:30:55 NODE=ocean

M verify address local plover

MNEMONIC ADDRESS: plover X.121 ADDRESS:
LEVEL: local SERVICE STATE: in

PAD SUPPORT: no

DIRECTORY: none
SECURITY: one

GROUP: plover

CCO>

4 . If the output of the verify command shows the name is out of service, the
name must be restored to service by entering the following command on
the data switch node console where servername is the name that is used
by the CommKit Host Interface server:

CC>restore addr local servername

5 . On the UNIX system, start the server. The following is an example of
starting a server, plover for hardware interface 1:

/opt/dk/sbin/dkserver -i 1 -s plover -v 9

1 is the number of the CommKit Host Interface board for which the
server is being started.

plover is the name of your computer as known by the data switch node.

2-38 Installation/Removal

Installation
Verify Operation

9 is the level at which the server activity is logged.

For more information, refer to manual pages dkserver(1M), srvtab(4), dkuidtab(4),
and dksrvlog(4).

This server will use the default controlfile and uidfile (/etc/opt/dk/srvtab and
/etc/opt/dk/dkuidtab). All logged server activity will be written to the default log-
file /var/opt/dk/log/dksrvlog.

To verify that the server has been started, examine the last few entries in the
server log (default is /var/opt/dk/log/dksrvlog). A successfully started server will
log the following messages:

date (pid) [x.yyy] SERVER name is INITING files= (srvtab uidtab) loglvl= n
date (pid) [x.yyy] dkmgr: SERVER name is ACTIVE and SERVING
dkmgr: chans per intfc= c window size= m protocol= p

Note: The third line above only appears if dkserver was started with a -v
option value of 8 or more.

pid is the process id of the dkserver process.

x is the interface number.

yyy is the channel number that the server is running on.

name is the name of the started server.

srvtab is the server table.

uidtab is the authorization table.

n is the level at which the server activity is logged.

c is the number of channels used when the dkdaemon process was started.
If this value does not equal the number of channels per interface as
defined in the data switch control computer database, then the daemon
was started with the wrong number of channels or the entry for the
CPM-HS was configured incorrectly. Either the value in your computer
or the value in the data switch control computer database must be
changed so that the number of channels are the same.

To change the number of channels on your computer, refer to the section

Installation/Removal 2-39

In
st

al
la

tio
n

Verify Operation

Changing the Number of Channels in Chapter 4.

m is the receive window size.

p is the call processing protocol version.

After verifying that the server has started, verify that it is actually communicat-
ing with the data switch node. Enter the following command on the data switch
console to display a summary of the virtual circuits that are active on the
CommKit Host Interface:

CC> display connections mod XX

XX is the number of the CPM-HS slot. The output of the displaycommand should
verify that at least one channel is in the SERVING state. If it is not, then the
server (/opt/dk/sbin/dkserver) is not successfully communicating with the data
switch node; refer to the section Troubleshooting the Host Interface Communication
in Chapter 4.

The following is an example of the displaycommand for a CPM-HS module in
slot 8:

CC> display connections mod 8

90-11-13 13:53:04 NODE=ocean
M display connections mod 8
MODULE: 8

CH/PT CU/TM GROUP PKT CNT STATE MOD ADD CH/PT CU/TM GROUP PKT CNT
BOARD (+ = PDD) BOARD

1 **** 4923 ACTIVE
2 plover 40 SERVING

CC>

2-40 Installation/Removal

Installation
Verify Operation

Verify Data Transfer Across the Interface

The command /opt/dk/sbin/dkload [see dkload(1M)] can be used to perform a
loop-around data transfer to load test and check for possible errors and/or prob-
lems on the CommKit Host Interface.

/opt/dk/sbin/dkload sets up a virtual circuit between one or two CommKit Host
Interface hosts and then sends and receives data across the data switch network
circuit.

The format of this command is as follows:

/opt/dk/sbin/dkload dialstring.dkload [-s messagesize] \
[-n number of iterations] [-l logfile]

To run a loop-around load test, the dkload command should use the local
machine dialstring that connects the local machine to itself.

In addition, there must be a dkload table in the /etc/opt/dk/srvtab directory on the
destination host. The default system has this table already included.

For example:

/opt/dk/sbin/dkload dialstring.dkload -s 512 -n 1000

dialstring is the name of the host as known by the data switch node. This will
result in 1000 messages of size 512 bytes each to be sent loop-around to and from
the host dialstring and the results of the test sent to the file /tmp/dkloadlog. To
verify that the tests have passed, tail the file /tmp/dkloadlog. There should be
entries in the log file similar to the following:

Installation/Removal 2-41

In
st

al
la

tio
n

Verify Operation

PID: LOCAL TEST FINISHED OK at DATE
nwritten=512, sendsize=512, countsent=1000

PID: REMOTE TEST FINISHED at DATE
PID: REMOTE TEST FINISHED OK nread=512, countread=1000

PID is the process id of the outgoing dkload process (LOCAL) or the
process id of the incoming dkload process (REMOTE).

DATE is the date and time the test completed.

nwritten is the return value from the final write system call.

sendsize is the number of bytes sent for each iteration.

countsent is the number of iterations actually sent.

nread is the return value from the final read system call.

countread is the number of iterations actually received.

The values of countsent and countread should be equal to the number specified
on the /opt/dk/sbin/dkload command line for the -n flag. Any other form of
entry indicates a failure. The values of nwritten and nread should be equal to
the number specified on the /opt/dk/sbin/dkload command line for the -s flag.

In the case of a failure:

1 . Examine the dkload log (/tmp/dkloadlog in the command line shown previ-
ously) for an indication of the reason for the failure. See dkload(1M) for a
description of the error encountered.

2 . Refer to the section entitled Software Troubleshooting Procedure in Chapter
4.

3 . Finally, remove the log file /tmp/dkloadlog.

Verify Terminal Login Across the Interface

After verifying that the server is talking to the CommKit Host Interface, we sug-
gest you test the operation of the terminal (tty) interface as follows:

2-42 Installation/Removal

Installation
Verify Operation

1 . Verify that there is a terminal connected to the data switch network that
has access to your computer via the CommKit Host Interface.

2 . Enter the following where area/exchange/host is the full address of the
server name used by your computer as entered in the data switch control
computer database:

DESTINATION: area/exchange/host
login:

3 . Continue the terminal session as a normal login session.

4 . In the event that the login sequence fails, refer to the section Software
Troubleshooting Procedure in Chapter 4.

Verify Operation of the Remote Login Facility

We suggest you test the operation of the remote login facility as follows:

1 . Enter the following command from a terminal logged on to the host
where area/exchange/host is the address of the server name being used by
your computer as entered in the data switch control computer database.

su listen -c "dk area/exchange/host "
login:

The su command is used to change user UID to the listen user ID
because the default /etc/opt/dk/srvtab server table traps and rejects
remote login calls that attempt to use the root login.

2 . Continue the session as a normal login session.

3 . In the event that the login sequence fails, refer to the section Software
Troubleshooting Procedure in Chapter 4.

Installation/Removal 2-43

In
st

al
la

tio
n

Customize the Control Tables and dkitrc

The CommKit Host Interface software package relies on a number of files (tables)
which must be edited to reflect your own community of interest. These files con-
trol external access to your host and help direct requests to other remote host.

Note: The software installation process is not complete until these files have
been edited.

When using customized table files, the new version of control tables will be
installed under the same name as the old files with the suffix _4xvX, if the saved
files are different than the files on the machine.

Note: The system will always save the file /etc/init.d/dkitrc_4xvX, even when the
delivered and customized versions are the same.

This gives you the opportunity to compare the delivered files with your own ver-
sion of the files. (These files are /etc/opt/dk/dkdotab_4xvX, /etc/opt/dk/dkhosts_4xvX,
/etc/opt/dk/dkgroups_4xvX, and files with the suffix _4xvX under /etc/opt/dk/srvtab
directory. If your /etc/opt/dk/srvtab is a regular file, the delivered files will be
installed in the /etc/opt/dk/srvtab_4xvX directory.)

Note: The suffix _4xvX (where xvX represents the release and version number;
e.g., _42v3) used for the delivered files will change for each new release
or version of the CommKit Host Interface software.

Note: If a control table file has not changed, the system will not create a _4xvX
file for that file. If you do not see a _4xvX version of a file, it means that
the new control table file was identical to the old version which was,
therefore, not saved.

The files are:

/etc/opt/dk/srvtab
directory

files under this directory must be edited to reflect local
area, exchange, and host names and to grant external
access to your computer through the data switch node

/etc/opt/dk/dkhosts to be edited to reflect local host names

/etc/opt/dk/dkdotab to be edited to reflect local services.

/etc/opt/dk/dkgroups to be edited to reflect local channel groups.

Another file which may be customized is the shell script /etc/init.d/dkitrc. This
script has links in several of the /etc/rc?.d directories and is executed each time an
init state transition occurs. Lines for starting additional daemons or servers may
be added to this shell script. Refer to the section Administration Notes in Chapter 4
and the dkitrc(1M) manual page for more details.

2-44 Installation/Removal

Installation
Customize the Control Tables and dkitrc

If you use a dkuidtab other than the default, it must be created by root with
mode 400. For example, you can have multiple servers (dkserver) with each hav-
ing its own dkuidtab. In order to effectively tailor these files to your configura-
tion and environment, refer to the Manual Pages and to the detailed descriptions
of these tables in Chapter 3.

Where To Go From Here

The installation of the CommKit Host Interface is now complete.

If you are setting up RFS, uucp e protocol, or other TLI applications, refer to the
section Using TLI Support in Chapter 4. If you are setting up uucp d or g proto-
col, refer to the section Configuring uucp with d or g Protocol in Chapter 4. If you
are setting up remote printers, refer to the section Printer Administration in
Chapter 4.

Note: RFS is not supported by the NCR UNIX System.

Remove the CommKit TLI Package

If you are removing the CommKit Host Interface software, you must first remove
the CommKit TLI package. To remove the TLI package:

1 . Log on as root.

2 . Execute the following command to verify what listeners, if any, are active.

nlsadmin -x

Installation/Removal 2-45

In
st

al
la

tio
n

Remove the CommKit TLI Package

3 . Stop all active listener processes by using the sacadm command. For
example, for a listener started with a pmtag (netspec) of dktp0:

sacadm -k -p dktp0

4 . Enter the following command to remove the TLI package:

pkgrm cktli

5 . If the package displayed is correct, enter y to confirm removal.

6 . Once the TLI package has been removed, the system will remake a new
UNIX Operating System.

7 . We recommend you reboot the system, but it is not necessary. However,
after removing all packages, the system should be rebooted by entering:

shutdown -y -i6 -g0

Remove the CommKit Host Interface Software

If you have installed the TLI Support package, you must remove it before you
can remove the CommKit Host Interface Software.

2-46 Installation/Removal

Installation
Remove the CommKit Host Interface Software

Non-Prompted Mode (_dkhost _parms File)

Note: Refer to the section Installation and Removal Using the _dkhost_parms File
for complete details on the non-prompted mode.

If you create a file /etc/_dkhost_parms to specify the value of the
installation/removal parameters, the removal program will not prompt for them.
Refer to Table 2-1 for the shell variables used by the removal procedure.

(Refer to Figure 2-1.) The removal procedure will be terminated if the format or
content of the file is invalid. If the /etc/_dkhost_parms file exists, the following
message will appear:

The removal parameter file /etc/_dkhost_parms exists.
This removal will be run in NON-PROMPTED mode using the
values specified in this file.

Hit key within the next 30 seconds if you do not wish to
remove in NON-PROMPTED mode.

If you hit the Delete key, the following message will appear:

Removal will be run in PROMPTED mode.

Do you wish to continue the removal?
Enter y or n:

Enter n if you wish to examine the _dkhost_parms file.

To remove the CommKit Software using the non-prompted mode, follow the
appropriate procedures described under Prompted Mode below.

Installation/Removal 2-47

In
st

al
la

tio
n

Remove the CommKit Host Interface Software

Prompted Mode

To remove the CommKit Software Release 4.4:

1 . Log on as root on the console.

2 . Stop the server(s) by entering the following command for each running
dkserver:

/opt/dk/sbin/dkserver -t -i interface -s servername

interface is the interface board number.

servername is the name of the dkserver (default is the system name
[uname(1)]).

3 . Notify all users that the CommKit Host Interface is coming down by
entering the following:

wall
The CommKit Host Interface is coming down.
Please log off if you are using it.

Ctrl-d

4 . Terminate the dkdaemon process or processes where pid_of_dkdaemon is
the process id of the daemon process.

kill -9 pid_of_dkdaemon

2-48 Installation/Removal

Installation
Remove the CommKit Host Interface Software

Note: Be sure to kill all of the dkdaemon processes. There may be several since
the administrator can start separate daemon processes for each
CommKit Host Interface board and driver subsystem.

5 . To remove the CommKit Software proceed as shown in Figure 2-9.

Note: Figure 2-9 shows the screen displayed if you saved the customized tables
(dkhosts, dkdotab, dkgroups) and the service files under
/etc/opt/dk/srvtab directory during the removal of the previous release of
CommKit Software.

Figure 2-9: CommKit Software Removal – srvtab as a Directory

pkgrm commkit

The following package is currently installed:
commkit CommKit Host Interface to AT&T Data Switch

(u3b2v4) 4.4 v3

Do you want to remove this package [y,n,?,q] y

Removing installed package instance <commkit>

Copyright (c) 1995 AT&T
All Rights Reserved
Verify package dependencies.
Processing package information.
Executing preremove script.

Do you want to remove files /etc/opt/dk/dkhosts,
/etc/opt/dk/dkdotab, /etc/opt/dk/dkuidtab, /etc/opt/dk/dkgroups, and
all files under /etc/opt/dk/srvtab directory (y or n)? n

Do you want to remove the file /etc/init.d/dkitrc (y or n)? n

/etc/init.d/dkitrc will be retained.

6 . If you enter y in response to Do you want to remove files... , all
of your customized files will be lost. Enter n if you wish to keep these
files for future use. The system will respond as shown in Figure 2-10.

Installation/Removal 2-49

In
st

al
la

tio
n

Remove the CommKit Host Interface Software

7 . The system will ask if you want to remove the /etc/init.d/dkitrc file (Figure
2-9). Enter n if you wish to save it.

Figure 2-10: Typical Customizing Files Screen

Removing files under /var/opt/dk/log directory
Removing the device files
Removing dkpe module ...
Removing dkhs module ...

•
•
•

Removing pathnames in <tab> class
Removing pathnames in <none> class
/var/opt/dk/include/sysexits.h
/var/opt/dk/include/stats.h
/var/opt/dk/include/remfio.h

•
•
•

/opt <non-empty directory not removed>
/etc/rc2.d <shared pathname not removed>
/etc/rc1.d <shared pathname not removed>
/etc/rc0.d <shared pathname not removed>
/etc/opt/dk <non-empty directory not removed>

•
•
•

/dgn/X.DKPE
/dgn/DKPE
/dgn <shared pathname not removed>
Executing postremove script.

Restoring /usr/lib/libdk.so
Updating /etc/ttysrch

Updating system information.

Removal of <commkit> was successful.

*** IMPORTANT NOTICE ***
If removal of all desired packages is complete,
the machine should be rebooted in order to
ensure sane operation. Execute the shutdown
command with the appropriate options and wait for
the "Console Login:" prompt.

2-50 Installation/Removal

Installation
Remove the CommKit Host Interface Software

8 . Execute the following to reboot the system:

cd /
/etc/shutdown -y -i6 -g0

Installation/Removal 2-51

In
st

al
la

tio
n

Remove the CommKit Host Interface Software

2-52 Installation/Removal

3 Control Tables

Introduction 3-1
Overview of Control Tables 3-1

Data Switch Dialstrings 3-2
Examples 3-5

dkhosts 3-7
Destination Mapping 3-10

dkgroups 3-13

srvtab 3-15
Server Table 3-16
System Field 3-17

.user Suffix 3-18
Service Field 3-18

– 3-19
* 3-19
authorize 3-19
dkload 3-20
do 3-20
login 3-20
pupu 3-20
rl 3-20
rx 3-21

Table of Contents i

Table of Contents

uucp 3-21
whoami 3-21

Flags Field 3-21
User Field 3-24
Program Field 3-26
Initial Parms Field 3-26
Server Table Scanning Rules 3-28

Modifications to the Server Table 3-28
Server Table Validation and Matching 3-28

Group.user Facility 3-29
User ID Mapping Rules 3-30

Transparent User ID Mapping 3-30
Translated User ID Mapping 3-31
Fixed User ID Mapping 3-31
Restrictive User ID Mapping Ranges 3-32

Trapping Incoming Calls 3-34
Unauthorized Service Requests 3-35

Spawning a TLI Application 3-36
Server Table Entries Which Are Not Secure 3-38
Directory Mode for /etc/opt/dk/srvtab 3-40
Summary 3-41

dkdotab 3-42

dkuidtab 3-44

ii Table of Contents

C
ontrol T

ables
Introduction

This chapter describes the control tables that must be edited to reflect your AT&T
data switch network environment. These tables are used when a call is received
or sent through the CommKit Host Interface. The CommKit Host Interface
software relies on these tables to implement call validation for such services as
login, remote login, remote execution, and file transfer. The control tables also
specify the information required to process these services. The CommKit Host
Interface tables (residing in /etc/opt/dk) are:

dkdotab used for outgoing calls dkuidtab used for incoming calls
dkhosts used for outgoing calls srvtab used for incoming calls
dkgroups used for outgoing calls

Overview of Control Tables

When using the dk command, the dkhosts table is scanned for a match of the
host name and service type (l for remote login, x for remote execution) with the
host and classes fields in the dkhosts table. If a match is found, the Dialstring and
Miscellany fields are used to construct the dialstring that is sent to place the call.
In addition, if the shell variable DKGROUP is set, the dkgroups file is scanned to
determine the interfaces and channel numbers to use when establishing the call.

When an incoming call is received, the srvtab table is scanned by the dkserver
program until a match is found on the system, service, and user fields with the
same fields of the incoming dialstring. When a match is found, the remaining
fields in srvtab determine what program is to be executed on that channel (such
as login, uucp, push, pull, etc.). If a match is not found, the incoming call is
denied access to the host.

The dkdotab table is parsed when the dkdo service is invoked on the local host,
looking for a match on the command field in the dkdotab table with the command
argument to dkdo. When a match is found, the remaining fields indicate on
which host to execute the command, what flags affect the operation of dkdo, and
what files are associated with the command.

Finally, the dkuidtab table is scanned on incoming calls to validate and map
incoming user IDs with valid user IDs on the local system. The dkuidtab table is
scanned if the value of the user field in the srvtab table is an & or if the incoming
call request includes a DKKEY. A three-field entry is added to the dkuidtab table
when a user authorizes to the host [see dkauth(1C) and authorize(1M)]. A dkuidtab
file is created under /etc/opt/dk during the installation procedure. The software

Control Tables 3-1

C
on

tr
ol

 T
ab

le
s

Introduction

distribution medium does not contain a sample of this file. Manual administra-
tion of the dkuidtab file is unnecessary.

Data Switch Dialstrings

Understanding the purpose and format of the data switch dialstring is crucial to
setting up the interface tables. This section gives an in-depth description of the
dialstring and its use.

The dialstring is used to access other data switch devices (such as terminals,
printers, and other hosts) from your host system. Dialstrings are originated by a
sender (such as a terminal user or a program on the local host), expanded by the
data switch node, and interpreted by the receiver (such as a server on the remote
host). Dialstring refers to the sequence generated by the sender and the sequence
generated by the data switch node and made available to the receiver.

The format of the dialstring made available to the receiving end differs depend-
ing upon whether the node is a BNS, Datakit II VCS, or Datakit VCS node, for
different generics of the data switch, and on whether the destination is a host
connected by means of the CommKit Host Interface. The following description
assumes a Datakit II VCS or BNS data switch.

The format of the expanded dialstring transmitted from the data switch node to
the host is as follows:

Chan.Token.Lflag.URPinit.Recbuf\n
User-dialstring\n
User-Id\n
Origin.Node.Mod.Ochan.Cflag[.Par1.Par2...]\n
Module Type Information \0

3-2 Control Tables

C
ontrol T

ables
Data Switch Dialstrings

Note: The Datakit VCS dialstring is the same, except that it does not include
the URPinit, Recbuf, and Module Type Information fields.

The fields are:

Chan – the channel number assigned to the incoming data switch call
(such as a call from the local to the remote host) by the data switch node.

Token – a unique request identifier associated with the incoming call.

Lflag – the local flag byte (L if the call originated on the local data switch
node and R from a remote data switch node).

URPinit – the URP initialization byte (0 if the call originator handles URP
initialization, 1 if the local host is to send INIT1, 2 if the local host is to
send INITREQ, and 3 if the local host is to send both INITREQ and INIT1).

Recbuf – the logarithmic (base 2) value of the call originator’s receive
buffer size.

User-dialstring – the information provided by the caller on the local host in
the original dialstring (such as location, service, protocol, and parameter infor-
mation).

User-ID – a sequence of characters which the data switch node extracts
from the call setup message. The User-ID convention is as follows. If the
first character is 0, it represents an octal user ID. If it is entirely numeric, it
represents a decimal user ID. Otherwise, it is interpreted as a character
login.

Origin – the data switch node group name of the originator as known to
the remote data switch node.

Node – the name of the remote data switch node.

Mod – the module number of the call originator in character decimal for-
mat.

Ochan – the backplane channel number of the call originator on the
module indicated by Mod.

Cflag – the call flag (F if this is the first call from a port with a predefined
destination and P if this is the second or succeeding call to this host from
the same host with no drop in the incoming DTR/CARRIER lead).

Control Tables 3-3

C
on

tr
ol

 T
ab

le
s

Data Switch Dialstrings

[.Par1.Par2...] – reserved for nonpositional parameters. The current imple-
mentation supports only a baud rate field which identifies the baud rate of
the incoming call (BD=xxxxx).

Module Type Information – the hardware module type and service type of
the call originator. It is intended to be used internally by the network.

This discussion will address the User-dialstring portion of the dialstring.

Note: The Chan, Token, Lflag, URPinit, Origin, Node, Mod, Ochan, and Cflag
values are supplied by the data switch node and are not discussed here.

The format of the User-dialstring portion of the dialstring is:

location.service.protocol.parameter

Although the specific dialstrings can vary, the format of the User-dialstring fol-
lows these general rules:

The location is of the form area/exchange/host where area is the name of the
area code in which the data switch node resides, exchange is the name of
the exchange in which the data switch node resides, and host is the name
of the local service name for the host as defined in the data switch control
computer database. This location information is used to route the call
through the data switch network to the desired host.

The next fields in the User-dialstring are optional to the data switch. Trans-
lation of these field values is positional and dependent on the program
processing the incoming call message, such as the CommKit Host Interface
server dkserver. The incoming dialstring is translated on the remote host
using the srvtab table.

The service field contains the actual CommKit Host Interface service
desired. This field is mapped into the service field in the srvtab table on the
remote host.

The protocol field contains optional protocol specifications. The values for
the protocol field of the dialstring map into the flags field in the srvtab.
These protocol values can be grouped logically as follows:

3-4 Control Tables

C
ontrol T

ables
Data Switch Dialstrings

— Protocol values indicating the type of service (that is, raw, terminal,
and remote execution services, etc.) are to be used on the remote
host

— Protocol values applicable to use on the remote execution driver

— Protocol values applicable to use for the terminal driver

— Other flags.

These protocol field specifications are optional and, if not specified by the
user, can be supplied by the calling program on the local host or mapped
from the entry in the srvtab on the receiving host.

The parameter field contains an optional parameter field interpreted by the
program that processes incoming service requests such as dkserver.

Examples

If a user with a login of goldfish having a numerical user ID of 104 is logged on
to the host fish and wants to remotely log on to host bird, the following com-
mand would be executed on fish:

Note: All command entries must be followed by the Enter key.

dk nj/shore/bird

The dk program calls maphost to add the service and protocol field specifications
to the outgoing dialstring. The dialstring now becomes:

nj/shore/bird.rl.vx

nj/shore/bird is the location or area/exchange/host information

Control Tables 3-5

C
on

tr
ol

 T
ab

le
s

Data Switch Dialstrings

rl is the service name for remote login [see srvtab(4)]

v and x are protocol values translated on the receiving (remote) end as:

v Environment variables should be read from the incoming data channel

x Open the remote execution protocol device driver for this channel.

The data switch node then adds routing information to the supplied dialstring,
and the receiving host sees the following dialstring arrive for service:

Chan.Token.Lflag.URPinit.Recbuf\n
nj/shore/bird.rl.vx\n
104\n
Origin.Node.Mod.Ochan.Cflag[.Par1.Par2...]\n
Module Type Information\0

Chan is the channel number assigned by the data switch node and subse-
quently translated into a UNIX system device on the remote host

nj/shore/bird is the location provided by the caller on the local host in the
original dialstring

rl is the service to be executed on the remote host (as supplied by the dk
program)

v and x are the protocol values (as supplied by the dk program)

104 is the numerical user ID of the user goldfish on the calling fish

Origin is the originating group

Token, Lflag, Node, Mod, Ochan, Cflag, URPinit, and Recbuf are the keywords
associated with the values supplied by the data switch node.

The dkserver running on the remote host will process incoming call requests.
When the call comes in on the serving channel from the data switch node, the
server uses the incoming dialstring to interrogate the server table to determine
what action should be taken to satisfy this service request. It uses the system
(nj/shore/bird), service (rl), and user (104) fields to find a match with an entry in
srvtab so that the correct action can be taken. The server table entry shown
below matches the incoming call.

3-6 Control Tables

C
ontrol T

ables
Data Switch Dialstrings

System Service Flags User Program Initial Parms
--
nj/shore/* rl /vaex *n %s -Xsh:-c:%p

If protocol values of the flags field had not been supplied (which is not the case in
this example), then the protocol values v, a, e, and x would have been supplied.
The program executed on the remote host is %s, which is translated by dkserver
into the pathname of the user’s shell as specified in the /etc/passwd file. *n
requests that the system use the incoming numeric user ID (104) transparently if
an entry is found in /etc/passwd with the same number.

The parameters to the shell are -Xsh:-c:%p. %p is translated by the server as any
parameter sent in the dialstring from the local host, reparsed, so that if it contains
colons, separate arguments will be generated. The server will then fork and exec
a copy of the program supplied in the program field with the parameters supplied
in the Initial Parms field to handle this call. If the remote host’s password file does
not contain a valid entry for user 104, the call is rejected with an access denied
error code.

dkhosts

Refer also to the dkhosts(4) manual page.

The CommKit Host Interface software package includes a sample dkhosts table
found in the directory /etc/opt/dk. Edit this sample table to reflect your network
environment.

Additionally, the user may create a dkhosts file in his/her home directory
($HOME/.dkhosts).

The dkhosts mapping table is used for expanding dialstrings when making out-
going calls from the host. The table is presented as shown:

Control Tables 3-7

C
on

tr
ol

 T
ab

le
s

dkhosts

host classes dialstring miscellany

host is the name given to a remote host

classes define the services (remote login, remote execution, file transfer)
supported by the remote host

dialstring is the full data switch address of the remote host

miscellany includes the arguments for the remote service.

Note: Delimit fields with tabs only; do not use blanks.

When creating a dialstring, the dkhosts interface table is sequentially scanned for
a match in the host and classes fields. If a match is found, then the dialstring and
miscellany fields are used to create the dialstring.

The following service classes are supported on the host:

d dkdo service l Remote logins x Remote execution
f File transfer p Printer

For example, if the host fish offered d, l, and x [see the dkdo(1C) and dk(1C)
manual pages], then the entry for fish would be:

fish dlx nj/shore/fish -

The miscellany field is present for cases where the call through the CommKit Host
Interface is nonstandard or for cases that require additional passed parameters.
The miscellany field entries contain subfields separated by commas. These sub-
fields contain two-character names constructed from the service class character
and another character appropriate to the subfield value. The characters
representing the field names are:

c alternate command to execute locally
s service name
v existence of environment variables (y or n)

3-8 Control Tables

C
ontrol T

ables
dkhosts

p protocol string
o old protocol (y or n)

An example use of the miscellany field is to force the dk command to use dkcu for
remote logins to a particular host. This would be necessary if the destination host
does not have a remote execution driver and, therefore, does not support the
remote login protocol. In this case, the miscellany field for the desired host is
parsed, and the retrieved information is used to complete the call.

lc=dkcu:-f,lp=t

An example of an entry in the dkhosts file is given below:

fish dlx nj/shore/fish lc=dkcu:-f,lp=t

This entry is for host, fish, which can handle calls defined as follows:
_ ___

Host Service Class Dialstring Command Specification for Remote Login_ ___
fish d, l, x nj/shore/fish dkcu -f TTY (t) protocol on a

remote host_ ___

_ ___

Briefly stated, for an l service class entry for fish, the dkcu command (c, alternate
command to execute locally) should be executed with an argument of -f and uses
t (p, protocol string) protocol.

Another example entry in the dkhosts is:

bird flx nj/shore/bird -

This entry is for host, bird, which can handle calls defined as follows:

Control Tables 3-9

C
on

tr
ol

 T
ab

le
s

dkhosts

_ ___________________________________
Host Service Class Dialstring_ ___________________________________
bird f, l, x nj/shore/bird_ ___________________________________

_ ___________________________________

A call being made to bird with any one of the service class values in the table
above will use the dialstring shown. bird is on data switch node shore, and the
local data switch node is in nj. The miscellany field entry is a "-" which indicates
that there is no special processing that must be done to put this call through the
CommKit Host Interface.

Note: This dash must be included as a place holder or the entire entry will be
ignored.

Edit the sample dkhosts file to reflect your own data switch network environ-
ment. Change the host names to reflect the proper host names that will be refer-
enced in a CommKit Host Interface call, and the full dialstrings mapped accord-
ingly. For each host attached to the data switch node, determine the service
classes.

In general, the hosts that are local to your environment will support all the above
services. The remote hosts that are accessed through dialers will probably sup-
port only remote logins, and the call might be made by means of dkcu. The
entries in the dkhosts file for access to remote hosts often depend on the hardware
connections to those hosts and on the path taken to access them.

The host field corresponds to the host name being referenced. (In the previous
example, a valid host name is bird.) The service classes field matches the service
specified in the incoming host and service classes combination.

Destination Mapping

The two dkhosts files – $HOME/.dkhosts and /etc/opt/dk/dkhosts – are treated as one
concatenated file when maphost is invoked for destination mapping. maphost
will first check the entries in the local $HOME/.dkhosts file, and then, if no match
is found or if the file does not exist, maphost will check the /etc/opt/dk/dkhosts file.

The following shows an example of calling maphost(3X) directly from within a C
program to perform destination mapping. Its purpose is to show how
maphost(3X) references both the local and system-wide dkhosts files.

3-10 Control Tables

C
ontrol T

ables
dkhosts

The $HOME/.dkhosts contains the following:

Host Classes Dialstring Miscellany
hudson dlf nj/local/hudson -
lineprt p nj/local/lineprt -

/etc/opt/dk/dkhosts contains the following:

Host Classes Dialstring Miscellany
fraser dlf ca/remote/fraser -
hudson dlf ca/remote/hudson -
edsel dlf ca/remote/edsel -
tercel dlf ca/remote/tercel -

The example C program contains the following entries:

main()
{

(void) printf("1 dialstring: %s\n",maphost("",’f’,"","",""));
(void) printf("2 dialstring: %s\n",maphost("edsel",’f’,"",""));
(void) printf("3 dialstring: %s\n",maphost("",’f’,"","",""));
(void) printf("4 dialstring: %s\n",maphost("",’f’,"","",""));
(void) printf("5 dialstring: %s\n",maphost("bingo",’f’,"","",""));
(void) printf("6 dialstring: %s\n",maphost("",’f’,"","",""));
(void) printf("7 dialstring: %s\n",maphost("oh/mid/viper",’f’,"","",""));
(void) printf("8 dialstring: %s\n",maphost("",’x’,"","",""));

}

The output of the example C program with the example $HOME/.dkhosts and
/etc/opt/dk/dkhosts files is:

Control Tables 3-11

C
on

tr
ol

 T
ab

le
s

dkhosts

1 dialstring: nj/local/hudson
2 dialstring: ca/remote/edsel
3 dialstring: nj/local/hudson
4 dialstring: ca/remote/fraser
5 dialstring: bingo
6 dialstring: nj/local/hudson
7 dialstring: oh/mid/viper
8 dialstring:

The following is a description of the output:

Line 1: The sample C program contains a call to maphost with a null host
argument. The local dkhosts file, $HOME/.dkhosts, is referenced first
because it exists, and the first service class of f is matched. The local dkhosts
file remains open.

Line 2: Because maphost was previously called with a null host, successive
calls to maphost begin with last entry matched. Host name edsel is not
found in the local dkhosts file ($HOME/.dkhosts), therefore, the system-wide
dkhosts file (/etc/opt/dk/dkhosts) is referenced. A match is found, and both
files are closed because a host was specified.

Line 3: maphost is called with a null host. The local dkhosts file is opened,
and a match is made on the first service class of f. The file remains open
for successive maphost calls since a null host was specified and a match
was found.

Line 4: The next call to maphost with a null host fails to match on a service
class with the remaining entries in the local dkhosts file. The system-wide
dkhosts table is opened, and the first entry matches the service class passed
by maphost. Both files remain open.

Line 5: Because both tables are open, maphost will begins its search start-
ing with the last entry matched on in the system-wide dkhosts file. Because
no match is found, the host name is returned and both tables are closed.

Line 6: maphost is called with a null host. The local dkhosts file is opened
and returns the first service class entry matched. The file is kept open
because a null host was specified and a match was found.

3-12 Control Tables

C
ontrol T

ables
dkhosts

Line 7: maphost is called with a host name which contains slashes and is
immediately returned. No searches are performed in either table, but the
local dkhosts table is closed.

Line 8: maphost is called once again with a null host. The local dkhosts file
is opened. No match is found with a service class of x. The system-wide
dkhosts file is then searched. Because no match is found, both files are
closed and NULL is returned.

dkgroups

Refer also to the dkgroups(4) manual page.

The CommKit Host Interface software package includes a sample dkgroups table
found in the directory /etc/opt/dk. Edit this sample table to reflect your network
environment and/or channel limit imposed on user groups through the use of
the shell variable, DKGROUP.

The system administrator can use the shell variable DKGROUP to control the
available interfaces and channels on a per-user basis by setting DKGROUP in
/etc/profile and making it a read-only shell variable.

The dkgroups channel group table is used to provide limits on the number of
channels a group can use. This feature can be used in conjunction with multiple
groups on a CPM-HS to provide multiple originating groups. When used
without multiple groups on a CPM-HS, dkgroups provides a method to limit the
number of channels a group can use on a CommKit Host Interface; when used
with multiple groups, it provides a method of controlling the originating group
used in the srvtab(4) to control access permissions.

For more information on multiple groups associated with a CPM-HS module,
refer to the Commands Reference guide for the data switch you are using
(Datakit, BNS-2000, etc.).

Control Tables 3-13

C
on

tr
ol

 T
ab

le
s

dkgroups

The dkgroups table format is as follows:

name interface low high

name is the name associated with the dkserver channel range. This name
does not have to match the group name on the data switch.

interface is a comma-separated list of interfaces on which the channel
group is defined.

low is the lowest channel for the channel group. When using multiple
interfaces the channel range is the same across all interfaces.

high is the highest number channel in the channel group. When using mul-
tiple interfaces the channel range is the same across all interfaces.

The low and high values can be the same, which defines a channel group of only
one channel. The channels are reserved from the lowest to highest channel,
inclusive.

The following example defines a channel group named onechan with a single
reserved channel (53) on interface 1.

onechan 1 53 53

When DKGROUP=onechan, all calls will use the special file /dev/dk/1.053 to make
calls. While a call is actively using this group, all other call attempts will fail with
the error EX_UNAVAILABLE.

The example below defines a channel group named multintf with 10 reserved
channels on two interfaces.

3-14 Control Tables

C
ontrol T

ables
dkgroups

multintf 1,3 10 19

This could represent a situation in which the two interfaces are backups for a
fault-tolerant system. When DKGROUP=multintf, call attempts will first try
interface 1 using channels 10 through 19, and then try interface 3 using channels
10 through 19.

After editing /etc/opt/dk/dkgroup, the channels must be reserved by means of
dkmaint(1M). This can be done manually, by executing dkmaint for each group
defined in dkgroups, or by stopping and then starting the CommKit Host interface
servers by means of dkitrc(1M). dkitrc will automatically reserve the channel
groups.

Caution: Take care in adding channel groups in dkgroups. Channel 0 or 1
should neverbe a channel group or part of a channel group.

srvtab

Refer also to the srvtab(4) manual page.

The granting and denial of access privileges by the CommKit Host Interface on a
called host is controlled entirely by the server table on that called host. An
incorrect or incomplete server table can cause serious security problems by
allowing unauthorized access to system files and resources.

This section describes the facilities available through the /etc/opt/dk/srvtab
server table and provides the user with several suggestions to make the network
connections more secure. A high degree of security is ensured by editing server
table files.

Caution: The sample /etc/opt/dk/srvtabfiles distributed with the CommKit
Host Interface software are not intended to be used as provided
and do not provide the customer with a high degree of security as
the default. The customer must customize the sample server table

Control Tables 3-15

C
on

tr
ol

 T
ab

le
s

srvtab

files to achieve the desired level of security.

Server Table

The directory /etc/opt/dk/srvtab and associated files (referred to as the server table)
are used to validate incoming call requests and map them into processes on the
called host. The server table can be tailored to restrict the types of calls permit-
ted. All incoming calls must be mapped by means of the server table; there are no
privileged calls that can bypass this procedure.

The server table is a directory containing files whose names correspond to the
names of requested services. For example, /etc/opt/dk/srvtab/pupu is the name of
the file used for the file transfer service, pupu. Alternatively, the server table
may be configured by the user as a single ASCII text file consisting of comment
lines and mapping entries. Entries may not span lines. In structure, this server
table format resembles a concatenation of the files normally found in the
/etc/opt/dk/srvtab directory.

Comments are indicated by a "#" character in the first column and are ignored
during call validation and mapping. Use comments to describe the function of
mapping lines. You may also use comments to disable mapping lines without
removing them from the file.

Mapping lines in the srvtab table consist of six tab-separated fields:

system service flags user program initial parms

Note: Delimit fields by tabs only. Do not use blanks.

These fields are described below.

3-16 Control Tables

C
ontrol T

ables
srvtab

System Field

The system field (originating group) contains a pattern against which originating
groups are matched. The format of the pattern is area/exchange/group[!][.user],
where the suffixes ! and .user are optional.

The area/exchange/group pattern may be specified in one of the following ways:

completely specified as in lc/sporty/hotrod

consisting of a single asterisk (wild card) as in *

consisting of a partially specified originating group with embedded wild
card characters:

— asterisk which matches any set of zero or more characters

— question mark which matches any single character

— brackets, which specify specific listed characters, a range of charac-
ters that match a single character (by means of a dash -), and/or a
negated list indicated by the symbol ˆ.

Under these rules:

Originating group fields l*?/sp?rty/h*rod*, ??/*/hotrod, and lc/spor???h*
all match the originating group lc/sporty/hotrod

Originating group fields l??/sp?rty/h*rod*, ??/*x/hotrod, and lc/spor??h*
do not match the originating group lc/sporty/hotrod

Note: The originating group fields *,*/*, and */*/* are equivalent and
match any originating group.

The originating group field l*?/sp[ao]rty/hotrod[b-df] does not match the
originating groups lc/sporty/hotrod, lc/sporty/hotrod2, but does match
lc/sparty/hotrodb, lc/sparty/hotrodc, lc/sparty/hotrodd,lc/sparty/hotrodf
lc/sporty/hotrodb, lc/sporty/hotrodc, lc/sporty/hotrodd, lc/sporty/hotrodf.

The originating group field lc/sp[ˆe]rty/*[ˆ1a-c] matches lc/sparty/hotrodd,
lc/sparty/hotrodf, and lc/sparty/hotrod2, but not lc/sperty/hotrod1,
lc/sperty/hotroda, lc/sperty/hotrodb, or lc/sperty/hotrodc.

The originating group suffix ! may be specified for originating group patterns
that end with an asterisk (*) wild card. The exclamation point (!) prevents the
asterisk wild card from matching the local dkserver name. For example, if the

Control Tables 3-17

C
on

tr
ol

 T
ab

le
s

srvtab

local server name is camaro, the pattern lc/sporty/*! will match all originating
groups in area/exchange, lc/sporty except lc/sporty/camaro. This feature prevents
users from calling themselves on the same host. The local server name and the
group name of the host in the data switch control computer database must be the
same for the ! feature to work.

.user Suffix

The originating group suffix .user may be used to match specific users from
either specific groups or from classes of groups. The user must be specified as a
decimal integer user ID to match the format provided in the call request informa-
tion. The group pattern *.0 would match the user root from any originating
group, while the pattern lc/sporty/*.0 would match the user root from any group
in the area/exchange, lc/sporty. A question mark is used to match the null user ID.
Since TY6 and TY12 ports do not generate a user ID as part of the dialstring, the
pattern *.? may be used to match requests from an originating terminal or
modem group. The pattern lc/sporty/*!.0 on the host hotrod would match the
user root from any group except lc/sporty/hotrod.

The symbols <, >, and - may be used as described below.

Note: Invalid user ID formats will be reported in dksrvlog.

The pattern lc/sporty/hotrod.<uid1 would match any user with an incom-
ing uid less than uid1. Similarly the pattern lc/sporty/hotrod.>uid1 would
match any user with an incoming uid greater than uid1.

The hyphen (-) is used to specify a range. For example, the pattern
lc/sporty/hotrod.uid1-uid3 will match any user with an incoming uid
between uid1 and uid3, inclusive.

Note: When specifying a range, the first uid must be less than or equal to
the second uid in the range.

Service Field

The service field contains the name of the service the caller may request. This field
consists of a single word or abbreviation and is used to match the service string
that appears after the first period in the requester’s dialstring. A single asterisk
may be used to match any requested service and the special entry "-" is used to

3-18 Control Tables

C
ontrol T

ables
srvtab

match the case where no specific service was requested by the dialstring.

You may add additional unique services to the server table, but the following
alphabetically listed services are distributed as part of the standard product:

–

The null service name is used to match requests not specifying a specific service.
This default service normally maps to an invocation of the login program which
is used to provide login initiation services. A user-friendly system in a trusted
environment might invoke a directory assistance or application program directly
as the default.

*

The wild card service name is used to match any requested service name. This
facility may be used in conjunction with the T flag (described later) to reject calls
by classes of users or from classes of sites.

authorize

The authorize service is used to establish preauthorized user name mapping
between called hosts. When a local user requests authorization on a remote host,
the remote host is requested to invoke the authorize service via the dkauth com-
mand. With dkauth, the user can:

Perform authorizations over multiple interfaces to a specified remote sys-
tem. The user can verify remote authorization by:

— using dk or dkcu to connect to the remote system and then run-
ning dkauth -d, or

— remotely executing the command:

dk system dkauth -d

Rejuvenate expired authorizations on the local system without having to
re-authorize from the remote system.

Delete authorizations on the local system without having to use the origi-
nal remote system to delete the authorize entry.

dkauth also allows the super user root to see all local authorizations on the sys-
tem.

Control Tables 3-19

C
on

tr
ol

 T
ab

le
s

srvtab

See dkauth(1C) for the proper way to invoke the dkauth command. The pre-
authorized user mapping facility is described in more detail in the section User
Field, later in this chapter.

dkload

The dkload service is used by the diagnostic tool dkload for interface loading.
This service supports the remote end of a loopback test program that can be used
to saturate the CommKit Host Interface.

do

The do service is used by the command dkdo to provide transparent remote exe-
cution of commands across different hosts.

login

The login service maps to an invocation of the login program which is used to
provide login initiation services.

pupu

The pupu service maps to an invocation of the pupu program which is used to
provide the remote support for a push or pull request.

rl

The rl service is used to match requests for remote login from another host. The
remote login service is normally requested over a remote execution channel and
provides the requester with a remote execution of an interactive command inter-
preter or shell.

Note: This facility allows a requester to bypass the normal login/password
sequence when remotely logging on to a host. It is also possible to map
remote login requests to an invocation of the login program and thereby
require a requester to supply a valid login and password.

3-20 Control Tables

C
ontrol T

ables
srvtab

rx

The rx service is used to match requests for remote execution from another host.
The remote execution service should always be requested over a remote execu-
tion channel and should specify the desired program to be executed. A remote
execution request is very similar to a remote login request except that a program
is specified with rx requests and the program is implicit (an interactive shell)
with rl requests.

uucp

The uucp service is provided to match requests for uucp service. This service
should map to an appropriate uucp login (such as nuucp) and invokes the uucico
program.

Note: Different login names can be specified, based on the originating group
name. For example, luucp might be used for requests from local hosts,
while nuucp would be used for requests from unknown or "network"
hosts. See the section Fixed User ID Mapping, later in this chapter.

whoami

The whoamiservice maps to an invocation of the echocommand and is used to
echo back a string showing the requester’s user number and originating group
name.

Other services in the /etc/opt/dk/srvtab directory are provided as examples.

Flags Field

The flags field of a server table mapping line contains one or more flags that may
be used to control or modify the actions the server takes when processing a call
request that has been mapped to that line. Flags specify options that are unique
to the mapped line. A brief description of each flag is provided in Table 3-1.

Control Tables 3-21

C
on

tr
ol

 T
ab

le
s

srvtab

Table 3-1: Server Table Flags
_ ___

Flag Description_ ___
a Additional arguments should be read from the incoming data channel before execu-

tion of the program. This flag should be specified only for remote execution channels
(see x option)._ ___

e Arranges for the exit code of the program to be passed back to the originating system.
This flag should be specified only for remote execution channels._ ___

h Invokes the mapped program with the SIGHUP hangup signal ignored. See signal(2)._ ___
l Spawns a TLI application from the srvtab service._ ___
t Opens the tty mode data service and invokes the program with the stdin, stdout, and

stderr files attached to the /dev/dkt/?.??? device for the tty channel. Note that the t flag
should be used with caution when it is associated with non-standard service. The t
flag uses a TTY interface that echoes its input by default. Origination endpoints other
than a user terminal (from a DESTINATION prompt or a dkcu) will not receive the
echoed data. If the data is not drained by the originating endpoint the network will
flow control the echoed data, which will build up on the destination host. The UNIX
system STREAMS module ldterm that actually echoes the data, does not honor flow
control and will consume all of the STREAMS resources._ ___

u Opens the raw [URP protocol] data service and invokes the program with the stdin,
stdout, and stderr files attached to the /dev/dk/?.??? device for the raw channel._ ___

v Environment variables should be read from the incoming data channel before execu-
tion of the program. This flag should be specified only for remote execution channels._ ___

x Opens the remote execution protocol data service and invokes the mapped program
with the stdin, stdout, and stderr files attached to the /dev/dkx/?.??? device for the
remote execution channel._ ___

F This flag allows the invoked program to be orphaned by dkserver(1M). The F flag is
used to inform dkserver(1M) that the invoked program should be a child process of
init(1M). Use of this flag prohibits the use of any utmp related flag: I, L, U. If any utmp
flag is used in conjunction with the F flag, the incoming call will be rejected._ ___

I Creates an INIT_PROCESS type utmp entry for the invoked program. This style of
accounting makes an entry in the system utmpx file that is transparent when using the
default options of the who command. It also makes an entry in the system wtmpx file
that may be displayed using the command last(1C). Use of this flag prohibits the use
of the F flag. If the I flag is used in conjunction with the F flag, the incoming call will
be rejected._ ___

_ ___

Table 3-1: continued on next page

3-22 Control Tables

C
ontrol T

ables
srvtab

Table 3-1: Continued

L Creates a LOGIN_PROCESS type utmp entry for the invoked program. This style of
accounting makes an initial entry in the system utmpx file that is transparent when
using the default options of the who command. This style of accounting assumes that
the invoked program (e.g., login) will overwrite this entry in the system utmpx file
with valid user information. This style of accounting does not make an entry in the
system wtmpx file; it assumes that the invoked program will make the initial entry,
thus avoiding multiple entries. Use of this flag prohibits the use of the F flag. If the L
flag is used in conjunction with the F flag, the incoming call will be rejected._ ___

M Sends mail to the specified user ID when a service is requested illegally. In order for
the M flag to operate, each service file must be modified by adding a line to the end of
the file. Refer to the example given in the srvtab(4) manual page._ ___

P Retains the dkserver’s nice(2) priority when invoking the application. The application
is expected to lower the priority after a short interval by means of nice(2). If this is not
done, incoming call processing can fail because there are too many high priority
processes. The P flag should never be used in a srvtab entry that invokes user login
processing or any other long running processes. (See Note, below.)_ ___

R Rejects the call unless the resulting mapped user ID has an "ordinary" shell. An ordi-
nary shell is defined as either a null shell field in the password file (the default
/bin/sh), or a shell field that references a program that ends in the string "sh" and the
basename of that program does not begin with the letter r (restricted shells like
/bin/rsh)._ ___

T Traps the call, rejecting it with a NAK code obtained from the first argument of the
program arguments field. The remainder of the program argument field will be pro-
cessed for "special code" expansion and will then be logged to the server log file._ ___

U Creates a USER_PROCESS type utmp entry for the invoked program. This style of
accounting makes an entry in the system utmpx file that is displayed when using the
default options of the who command. It also makes an entry in the system wtmpx file
that may be displayed using the command last(1C). Use of this flag prohibits the use
of the F flag. If the U flag is used in conjunction with the F flag, the incoming call will
be rejected._ ___

/ If a / flag is present, the flags that follow it act as the default flag settings and the user-
supplied protocol field portion of the dialstring (if any) replaces the part after the /.
This flag is invalid if the user-supplied protocol field contains illegal flags or if it con-
tains an I, L, R, T or U flag. The flags for remote execution channels are often specified
as /vaex to indicate that the default is to honor arguments, environment variables, and
to return an exit code._ ___

 If a flag is present, the list of STREAMS modules that follows the will be pushed
onto the stdin STREAM. The STREAMS module list should be separated by colons (:)_ ___

_ ___

Table 3-1: continued on next page

Control Tables 3-23

C
on

tr
ol

 T
ab

le
s

srvtab

Table 3-1: Continued

if more than one STREAMS module is specified. The flag should be the last flag
specified in the flag field._ ___

Et The Et flag may appear only in the dialstring as the final two characters of the protocol
field. dkserver sets the endpoint type to t, overriding the default value provided by
the data switch network. The character t must be a valid data switch endpoint type
code. See dkepoint(3X) for additional information._ ___

_ ___

Note: When using the P flag, the invoked application should return the nice
value to a neutral value by using a code fragment similar to the
following:

void restore_priority()

{

int curr_nice;

/* get current nice value by adding zero to it */

curr_nice=nice(0);

/*make the current value zero. */

(void)nice(-curr_nice);

}

User Field

The user field (user ID mapping) of a server table entry determines the way in
which the calling user ID is treated. The user ID in the call request may be passed
to the program unchanged, translated (mapped) into a new user ID, restricted to
a range, or ignored altogether by using a fixed user ID. See Table 3-2.

Regardless of the user ID mapping mode specified, a valid /etc/passwd entry must
exist for the resultant user ID in order for the server table entry to match the call
request. A program cannot be invoked with an invalid or illegal user ID.

3-24 Control Tables

C
ontrol T

ables
srvtab

Table 3-2: User ID Mapping Options
_ __

Option Description_ __
*n, *o Use the numeric user ID supplied in the call request information. The *o means

the user ID should be interpreted as an octal number. The *n indicates the user
ID should be treated as a self-determining number. For example, an initial 0x or
0X indicates hexadecimal, and an initial 0 indicates octal.

The *n and *o user ID formats will only provide a valid match if an /etc/passwd
file entry exists with the same numerical user ID and the password has not
expired. The group id is determined from that password file entry._ __

& Translate the supplied user ID and group-id names using the dkuidtab file. This
type of entry matches only those user IDs which have entries in the dkuidtab file.
This facility allows a user with a user ID on one host to be preauthorized as a
user with a different numerical user ID on another host. This preauthorization is
performed by the authorize command._ __

<uid, >uid The previous two forms can be further restricted to a range of user IDs by
appending <uid or >uid to the field. This restricts the incoming user ID to be less
than (or greater than) the specified decimal number. For example, "*n>0"
prevents root (user ID 0) from matching the line. Only one modifier may be
appended to an entry._ __

[login] This type of entry provides a fixed login name that is used for all matching call
requests. The [login] user ID format will return a valid match as long as a valid
/etc/passwd entry exists for login. Fixed login name specifications are useful for
assigning a single uucp login to a group of originating sites. The facility is also
useful when invoking authorization type services that require a fixed set of per-
missions. The [login] login ID format can be thought of as a form of setuid facil-
ity, since all call requests are mapped to the same login ID._ __

= and - The symbols = and - are allowed to specify a specific uid or a range of uids,
respectively. Examples are shown below:

*n=uid access granted for a specific uid
*n=uid1-uid2 access granted for a range of uids
*o=uid access granted for a specific uid
*o=uid1-uid2 access granted for a range of uids
&=uid access granted for a specific authorized uid
&=uid1-uid2 access granted for a range of authorized uids_ __

_ __

Control Tables 3-25

C
on

tr
ol

 T
ab

le
s

srvtab

Program Field

The program field of a server table entry contains the pathname of the program to
be executed. The field may contain a %s which will be replaced by the pathname
of the user’s shell as obtained from the /etc/passwd file.

The server uses the execv library function when invoking programs, so only paths
to binary executables may be specified in the program field of a server table entry.
The path should be fully specified (for example, /opt/dk/bin/program) for each
entry in the server table.

Initial Parms Field

The initial parms field (fixed program arguments field) of a server table entry speci-
fies the initial (fixed) arguments for the invoked program. The colon-separated
arguments from the server table will be passed to the invoked program starting
as the zero argument. If the flag is present in the server table entry, additional
arguments obtained from the incoming remote execution channel will follow the
initial arguments when the program is invoked.

Initial arguments may consist of, or be embedded with, one or more tokens
(sometimes referred to as special codes) that may be used to substitute information
from the dialstring. Each token is a two-character string consisting of a percent
sign (%), followed by a single alphabetic character. Invalid tokens are silently
removed and are not expanded.

Table 3-3 summarizes the values and descriptions of the allowed substitution
tokens. Since some older versions of the Datakit II VCS common controller do not
support certain features, the substitution string may turn out to be null.

Table 3-3: Program Arguments Specification

Specification Description___
%b The baud rate of the calling terminal. This token is not expanded if the incoming

call did not originate from a port providing baud rate information. (For example,
hosts currently do not provide this).

Table 3-3: continued on next page

3-26 Control Tables

C
ontrol T

ables
srvtab

Table 3-3: Continued

Specification Description___ ___
%c Originating channel number of the call being serviced.___
%d The dialed server name (for example, host). This does not include the period or

anything after it.___
%e The service field of the dialstring (for example, pupu).___
%f The originating group name of the caller (for example, lc/sporty/hotrod).___
%h The local server name.___
%l The originator, as known to the local node.___

%m The originating module number of the call being serviced.___
%n The originating data switch node name.___
%o The type of originating device.___
%p Parameters from the dialstring. The parameters are reparsed so that colons may

be used to produce separate arguments.___
%r The protocol field of the dialstring, if any.___
%s The pathname of the user’s shell as obtained from the /etc/passwd file. A null shell

field in the password file will be expanded as /bin/sh.___
%t The device file name that corresponds to the assigned CommKit Host Interface

channel, minus the initial /dev/.___
%u The numeric user ID of the user placing the call.___
%x The call flag applies only to originating data switch ports (for example, TY6,

TY12, etc.) which have been assigned a predefined destination. An F is returned in
place of the flag if this is the first call from the originating device and a P if there
have been previous calls.___

%z The module type flag will return the module type of the originating device if the
data switch includes this information in the dialstring (field 1 of the fifth line of
the dialstring).___

%C The server control file (for example, srvtab) or directory name used.___
%H The originating group name truncated to the length of the host field of an

/etc/utmp entry.___
%U The user ID mapping file name (for example, dkuidtab) used.___

Control Tables 3-27

C
on

tr
ol

 T
ab

le
s

srvtab

Server Table Scanning Rules

Several parameters are associated with each incoming call. Some of these param-
eters include the requester’s originating data switch group, the requested service
name, and the requester’s user ID, if known. The server uses these parameters to
match lines in the server table during the call validation process.

Modifications to the Server Table

The server table is opened each time a call request is received from the data
switch node. Opening the server table for each incoming call allows the adminis-
trator to make modifications that will take effect on the next incoming call. There
is no need to restart the server after modifications to the table.

Server Table Validation and Matching

Since /etc/opt/dk/srvtab is a directory, the file corresponding to the requested ser-
vice is examined. If that file does not exist, the wild card file * is used. Call
requests are denied with an access denied [see dkerr(3x)] rejection code if the end
of the table is reached before a match occurs. All lines containing a # character in
the first column and all lines without the proper number of fields are ignored.
Following the format validation of a server line, three comparisons are made
with the call request information:

1 . The requested service is compared to the service specified in the server
table entry. If the services do not match, the scan moves on to the next line
of the server table.

2 . The originating group for the call is then compared against the originating
group pattern in the server table entry according to the rules specified in
the System Field section. If the originating group fails the check, the scan
moves on to the next line.

3 . Finally, the originating user ID contained in the call request information is
processed by the method specified in the user field of the server table
entry. If the user ID processing results in an invalid user ID on the called
host, the scan moves on to the next line.

The first server table line that passes all the specified tests is considered a match.
When a match occurs, the call is accepted and the program specified in the server
table entry is invoked with the appropriate arguments according to the server
table flags.

3-28 Control Tables

C
ontrol T

ables
srvtab

Group.user Facility

The .user suffix to the originating group pattern is a useful facility for restricting
access by certain (often privileged) users. However, you must set up the server
table carefully or the desired effect may not be achieved.

An example server table fragment, that illustrates an actual problem one
administrator had using the .user originating group pattern suffix, is shown in
Figure 3-1.

Figure 3-1: Server Table Fragment .user Example

lc/sporty/camaro pupu - *n /opt/dk/bin/pupu pupu:from:%f
*.0 pupu - guest /opt/dk/bin/pupu pupu:from:%f
lc/sporty/*! pupu - *n /opt/dk/bin/pupu pupu:from:%f
* pupu - & /opt/dk/bin/pupu pupu:from:%f

If a pupu call request comes from root in originating group lc/sporty/camaro, the
request will match the first server table entry and will be run as root. The *n user
ID option indicates that no user ID translation will take place.

If the password file contains a login with the symbolic name guest and a pupu
call request comes in from root in an originating group other than
lc/sporty/camaro, the request will match the second server table entry and will
use the login guest for the pupu transaction.

If the called host has no guest login in the password file and a pupu call request
comes in from root in an originating group other than camaro in the area/exchange
lc/sporty, the request will match the third line of our example server table and
will allow the call to take place as root. The second line of the server table is
invalid in this case because there is no guest in the password file.

Finally (still assuming no guest entry in the password file), if a pupu call request
comes in from root in an originating group outside the area/exchange, lc/sporty,
the request will match the last line of the example server table and the call will be
denied unless root on the requesting host has a valid authorization. See
authorize(1M).

Control Tables 3-29

C
on

tr
ol

 T
ab

le
s

srvtab

The example in Figure 3-1 shows that considerable care must be given to the
specification of server table entries. The lack of a guest login on the system
prevented root requests from being mapped to guest even though the adminis-
trator may have been successful in employing this server table fragment on a dif-
ferent system. The administrator may have removed the guest login to limit
exposure from a different area without realizing the impact on the server table.

User ID Mapping Rules

The user field (user ID mapping) of the server table provides a flexible mechanism
for restricting or translating call requests from classes of users. Calls may use
transparent, translated, or fixed mapping. Transparent and translated mappings
may be further restricted to numerical user ID ranges. The type of mapping may
be selected individually for each originating group and service combination, or
may be specified using originating group patterns.

A user ID mapping facility is necessary because every user on every remote host
your system communicates with may not have a login on your system. Some of
your systems may have identical password files (for example, each user has the
same login on each system), while other groups of systems may have no users in
common. Commonly administered systems in a computer center may have
administrative logins (for example, root, bin, sys) in common, while each user
login may be unique to a single system. Finally, numerical user IDs (for example,
the user number for each login in the /etc/passwd file) may be unique across all of
your systems (for example, user ID 41627 identifies the login for "Rogers" and is
only used on systems where a rgrs login exists) or the numbers may not be
unique (for example, user ID 41627 is "Rogers" on Systems a, b, and c, but is
"Gordon" on Systems d, e, and f).

These issues must be addressed when setting up your system’s user ID mapping
methodology. Additional information on the types of user ID mapping is
presented below.

Transparent User ID Mapping

The transparent mode of user ID mapping is specified by the *n and *o user ID
mapping options in the server table. This mode allows incoming calls to retain
the same numerical user ID on the called system as on the calling system as long
as the numerical user ID appears in a valid /etc/passwd entry on the called system.

3-30 Control Tables

C
ontrol T

ables
srvtab

The transparent mode of user ID mapping is intended for use when two or more
systems have the same user population and each numerical user ID refers to a
single user across the set of systems.

During transparent mapping, it is not possible for the server program to verify
that the numerical user ID refers to the same user on both the called and calling
systems. Therefore, the user ID is accepted as long as a valid /etc/passwd file entry
– one that has not expired – exists on the called system.

This mode of user ID mapping should only be used when both the called and cal-
ling systems have the same user population and user IDs uniquely identify the
same user on both systems. If the same numerical user ID (for example, 100)
refers to different users on the two systems, do not use transparent mapping
between those systems: use translated mapping instead.

In addition, if transparent user ID mapping is used for administrative logins
between two systems, anyone that becomes root, bin, or another of the adminis-
trative users on one of the systems may retain those privileges on the other sys-
tem.

Translated User ID Mapping

The translated mode of user ID mapping is specified by the & user ID mapping
option in the server table. The translations are performed using the
/etc/opt/dk/dkuidtab user ID translation file [see dkuidtab(4)]. Translated user ID
mapping should be used when two or more systems must share some users but
the systems do not share common /etc/passwd files. Numerical user IDs do not
need to uniquely identify a single user across the set of systems.

The translated mode of user ID mapping is intended for use when two or more
systems may not have the same user population and each numerical user ID may
not refer to a single user across the set of systems.

This mode of user ID mapping is significantly more secure than transparent user
ID mapping since users must authorize themselves with a login and password
[see authorize(1M)] before using the resources of the called system.

Fixed User ID Mapping

The fixed mode of user ID mapping is specified whenever the user ID mapping
field of a server table entry lists a specific user name (for example, nuucp or
guest). The specified login must have a valid entry in the /etc/passwd file. This
mapping results in the call using the specified fixed login.

Control Tables 3-31

C
on

tr
ol

 T
ab

le
s

srvtab

Fixed user ID mapping is often required when invoking system programs that
establish sessions such as login. This is shown by the following server table exam-
ple:

201/colan/*! - L/t root /bin/login login:-p:-h%H

The authorize program must read and write files accessible only by root, so it
must be invoked with a fixed user ID mapping using the root login:

* authorize /vaex root /opt/dk/sbin/authorize authorize:2O1/58O/1293:%U:%f:%u

Fixed user ID mapping is also useful for selecting uucp logins based on originat-
ing location. Each of the logins must exist in the /etc/passwd file and have
/usr/lib/uucp/uucico as the login shell. This allows you to use the
/etc/uucp/USERFILE file to restrict resources based on originating area or access
point into the network:

201/colan/host*! uucp /u houucp %s uucico
201/colan/modem*! uucp /u phuucp %s uucico
201/* uucp /u njuucp %s uucico
i1/univ/earth uucp /u nnuucp %s uucico
* uucp /u nuucp %s uucico

Restrictive User ID Mapping Ranges

The transparent and translated modes of user ID mapping may be restricted to a
numerical range of user IDs by appending the <uid, >uid, =uid, or =uid1-uid2
suffix to the user ID mapping field specifiers. This allows the administrator to
restrict mapping to a range of numerical user IDs on a calling host or host group
basis.

3-32 Control Tables

C
ontrol T

ables
srvtab

For example, the administrator may block transparent file transfer access to a
range of administrative logins:

nj/cc/myux*! pupu uR *n>100 /opt/dk/bin/pupu pupu:from:%f

The administrator may have several systems that are commonly administered,
each with a different user population. In this case, transparent mapping could be
used for administrative logins and translated mapping for user logins. If admin-
istrative logins are all numerically less than 100, the following example shows
how three systems (myuxa, myuxb, and myuxc) may use transparent mapping
for user IDs less than 100 and translated mapping for user IDs greater than 100.
No other systems have access to the remote login service on this system:

transparent administrative mappings
nj/cc/myuxa rl U/vx *n<100 %s -Dsh
nj/cc/myuxb rl U/vx *n<100 %s -Dsh
nj/cc/myuxc rl U/vx *n<100 %s -Dsh
#
translated user mappings
nj/cc/myuxa rl U/vx &>100 %s -Dsh
nj/cc/myuxb rl U/vx &>100 %s -Dsh
nj/cc/myuxc rl U/vx &>100 %s -Dsh

The mapping entries for the previous example could be shortened to:

transparent administrative mappings
nj/cc/myux[a-c] rl U/vx *n<100 %s -Dsh
#
translated user mappings
nj/cc/myux[a-c] rl U/vx &>100 %s -Dsh

Control Tables 3-33

C
on

tr
ol

 T
ab

le
s

srvtab

Trapping Incoming Calls

The Server Table Scanning Rules section describes how the dkserver program
scans the server table to match and accept incoming calls. Successfully matching
a line in the server table results in an accepted call. Failure to find a match in the
server table results in a rejected call.

When an incoming call is accepted, a call answered code is sent back through the
data switch network to the requester. Rejected calls are answered with an
appropriate rejection code such as access denied, busy, no answer or out of service.
These rejection codes are defined as constants in the header file
/usr/include/dkit/dk_unixp.h with the prefix Ed. Examples are shown in Table 3-4.

Table 3-4: Rejection Code Examples
_ ___
Label Value Description_ ___
EdBUSY 1 All channels busy_ ___
EdNOANSWER 3 Server not answering_ ___
EdNOACC 7 Access denied_ ___

_ ___

The optional T (trap) server table flag provides a mechanism to reject incoming
calls that match a line of the server table. All server table mapping lines that
contain the trap flag in the flags field will reject an incoming call when the call
successfully matches the line. These lines may be considered trapping lines.
Server table mapping lines that do not contain the T trap flag will function as
before by accepting the incoming call and generating the specified program
according to the other flags in the flags field.

To make the call trapping facility as flexible as possible, the administrator may
select the rejection code to be used by each trapping line by specifying it as the
first argument in the initial_parameters field. The remainder of the
initial_parameters field is parsed for program argument substitution tokens (spe-
cial codes) and is logged to the server table log file as a record of the call rejection.

For example, the following server table line will trap all requests from the ori-
ginating group nj/district/trouble with an access denied rejection code, regard-
less of the requested service or requesting user ID, and will log a record of the
rejection in the server log file:

3-34 Control Tables

C
ontrol T

ables
srvtab

nj/district/trouble * T/v adm - 7:TRAPPED(%u from %f)

The above trapping line uses the wildcard service to match requests for any service
and specifies a fixed user ID mapping of the adm login so the line is guaranteed
to match all calls from all users in the specified originating group. The program
field contains a null program specification since no program will be invoked.
The arguments field specifies that all calls will be rejected with a rejection code of
7 (access denied; see the header file /usr/include/dkit/dk.h for a list of other rejec-
tion codes) and the requesting user ID and originating group (%u and %f) will
be logged in the server log file for future reference.

The call trapping facility may be used to block "restricted" resources from certain
classes of callers as outlined above, or it may be used as a diagnostic aid to help
test applications. The following example could be used to test an application’s
behavior when a required remote resource is busy:

univ/product/cust* appl U *n>100 /app/appl app:%f:%u:%p
univ/develop/test* appl T adm - 1:BUSY BEHAVIOR TEST

In the above example, all requests from production systems for the user defined
appl service are satisfied by invoking the necessary program with appropriate
arguments. All requests from test hosts in the development organization are
rejected with an ALL CHANNELS BUSY rejection code (rejection code 1) that
simulates what would happen if all CommKit Host Interface channels to the
called host were in use.

The trap flag can be a powerful application testing tool, as well as a barrier to
unauthorized host access.

Unauthorized Service Requests

dksrverr can be used to monitor unauthorized requests for CommKit Host Inter-
face services. When dksrverr is activated, invalid attempts for services are
entered in the dksrvlog. (Refer to dksrverr(1M) for details.)

Control Tables 3-35

C
on

tr
ol

 T
ab

le
s

srvtab

For example, for the following srvtab entry on univ/systest/general:

univ/develop/* login M daemon /opt/dk/sbin/dksrverr dksrverr:brig:%e:%f:%u:grab developer %u

will send mail to the brig login on general whenever anyone from a develop-
ment system attempts to log onto the system test general machine.

Spawning a TLI Application

The l flag in a srvtab file entry causes dkserver to treat incoming calls in the same
way as they would be treated by the UNIX Network Listener Service (NLS)
listenerdaemon process. After appropriate security and user ID checking, the
dkserver spawns the specified child process. The child process inherits a virtual
circuit file descriptor that has a dktm driver Transport Provider Interface (TPI)
STREAM with the raw data switch virtual circuit STREAM linked under it.
Before the new process begins execution, the STREAM is placed into the TPI data
transport state, T_DATAXFER, as defined in the system header file timod.h.

The dkserver process discards the Network Layer Provider Service (NLPS) mes-
sage that it receives from the call’s originating end point. Removing this mes-
sage from the data stream mimics the behavior shown by the UNIX listenerdae-
mon process. In place of the values found in the NLPS message, the dkserver
substitutes its own values into the environment for the following variables:

NLSADDR Set to the originating end point’s data switch node address,
originating group name, module address, and channel
number.

NLSOPT Set to the null string.

NLSPROVIDER Set to the value dktp with the CommKit Host Interface
number appended.

NLSUDATA Set to the null string.

MPREFIX Same value as NLSPROVIDER.

The l flag is primarily intended to accept requests from other hosts for RFS ser-
vices without having to create a separate data switch service address and listener
process for that service. However, other TLI or TPI conforming applications can

3-36 Control Tables

C
ontrol T

ables
srvtab

benefit by using the data switch network together with this CommKit Host Inter-
face feature.

Note: RFS is not supported by the NCR UNIX System.

Typically, the l flag is configured on the host advertising one or more mountable
RFS file systems to other remote hosts. These remote hosts are set up to call the
advertising host’s data switch service address with an rfs suffix.

The following shows the administrative steps required to set up this configura-
tion. The host that is advertising RFS mountable file systems is referred to as the
RFS server host and, in this example, has the service address nj/shore/bird. The
other hosts mounting the RFS server’s file systems are referred to as RFS client
hosts.

To set up the configuration, the UNIX system administrator must execute the fol-
lowing steps:

1 . Call the RFS server host from the RFS client host using its data switch ser-
vice address with an rfs suffix. The rfs file within the /etc/opt/dk/srvtab
directory must be edited to contain the following entry:

* rfs /l|timod listen /usr/net/servers/rfs/rfsetup rfsetup

Note: The flag indicates that dkserver should push the timod transport inter-
face STREAMs module onto the stack before rfsetupis spawned to begin
RFS services.

2 . Modify the rfmaster file in the directory /etc/rfs/dktp0 on the RFS client host
to call the RFS server host:

DM1.bird A nj/shore/bird.rfs

Control Tables 3-37

C
on

tr
ol

 T
ab

le
s

srvtab

Note: The name bird is the RFS server’s name in the RFS domain DM1.

3 . Start up RFS services on the RFS server and RFS client hosts using the
rfstart command.

4 . On the RFS server host, advertise the mountable RFS file systems:

share -F rfs -o rw -d "bird RFS file sys" /usr/example birdexp

5 . On the RFS client system, issue a mount request:

mount -F rfs DM1.birdexp /mnt

Server Table Entries Which Are Not Secure

Since the server table is the absolute arbiter of privilege for services provided by
the CommKit Host Interface server program, server table sequences which are
not secure must be avoided to prevent unauthorized access to the host system.
Administrators should periodically check the server table on each of their hosts
and remove any entries which are not secure. This section lists several server
table entries which are not secure and describes why they should be avoided.
This list is not exhaustive; there are other server table entries that can be equally
as damaging. The administrator should use these examples as a tool for deter-
mining whether a specific server table entry is secure.

The remainder of this section consists of server table entries, each followed by a
brief description detailing why the entries should be avoided.

3-38 Control Tables

C
ontrol T

ables
srvtab

* rl U/vx root %s -Dsh
* rx /vaex root %s -Xsh:-c:%p

The previous server table entries are not secure. Both lines allow a requester
from any originating system on the data switch network to become the super
user on the called system directly. In addition, a normal user (not the super user)
on the called system can issue a remote login or execution request to his/her
own system (a loop-around request) and also obtain a super user shell.

* rl U/vx *n %s -Dsh
* rx /vaex *n %s -Xsh:-c:%p

The above entries do not map all incoming remote login and remote execution
requests to super user on the called system, but they will allow the super user of
any system in the network to become the super user on the called system. Any
user on a system with a numerical user ID in common with a user on the called
system can access the called system with the permissions of that numerical user
ID.

nj/yourcc/* rl U/vx *n %s -Dsh

The above server table entry limits external exposure to systems in the nj/yourcc
area and exchange. Any super user on a system in that area and exchange can
become super user on the called system. A normal user on an originating system
with a numerical user ID in common with the called system can access the called
system as in the previous example.

Warning: The *n form of user ID mapping should not be used in conjunction
with originating group wild cards unless those wild cards are suf-
ficiently specific to limit access to trusted, commonly administered
systems.

Control Tables 3-39

C
on

tr
ol

 T
ab

le
s

srvtab

* pupu - root /opt/dk/bin/pupu pupu:from:%f

The specification of root on the above server table entry allows any user on any
system in the network to read or write any file on the called host. Although this
entry does not directly provide a super user shell to the requester, it does allow
any requester to replace any file (including /etc/passwd) on the called system. The
& user ID mapping specification should be used for pupu requests so that users
are forced to authorize with a login and password before transferring files.

Directory Mode for /etc/opt/dk/srvtab

Server tables that result in reasonably secure host systems generally require fully
specified access specifications with limited use of wild cards. Since the server
table is searched sequentially from the beginning each time an incoming call is
validated, this added security is not without cost. A directory server table for-
mat is used to greatly increase call validation performance when a large server
table is required.

The server control file (default: /etc/opt/dk/srvtab) is either a concatenation of all
the control files into a single file, or a directory of server control files (there is one
for each service provided). Each server table file contains entries for a single ser-
vice and the file names are the names of the services.

For example, a server table directory might contain files with the following
names:

- authorize do pupu rx whoami
* dkload login rl uucp

Each of the above files with the exception of the file * represents a specific ser-
vice. When an incoming call request is validated, the server program recognizes
that the server table is a directory and attempts to open a file in that directory
with a name that matches the requested service (for example, the server would
try to open the file /etc/opt/dk/srvtab/pupu for the file transfer service and the file
/etc/opt/dk/srvtab/− for the null service). If it opens, the server scans that file for a

3-40 Control Tables

C
ontrol T

ables
srvtab

matching line according to the rules outlined in the Server Table Scanning Rules
section. Lines in each server table file will still match the incoming call request
only if they contain the service field wild card or if the service field matches the
requested service.

If the opening of the appropriate server table file fails, the server attempts to use
the file * as the server table file. If the opening of this catchall server table file
fails, the incoming call request is rejected with an access denied rejection code.
Lines in the catchall server table file will only match the incoming call request if
they contain the service field wild card or if the service field exactly matches the
requested service.

Note: The server will only attempt to use the catchall server table file if the
appropriate server table file does not exist or cannot be opened. The
server only scans a single server table file for each call request.

Additional user-defined services would be provided by adding additional server
table files to the server table directory.

Take care when handling the files - and *, since these characters usually have spe-
cial meaning to editor programs and the shell, [see sh(1) in the UNIX System V
Release 4 User’s Reference Manual]. System administrators should use the follow-
ing commands when editing these files [see vi(1) in the UNIX System V Release 4
User’s Reference Manual]:

vi ./- # to edit the file "-"
vi ./* # to edit the file "*"

Restart dkserver when changing to or from a directory mode server control table
for the change to take effect; all incoming requests will otherwise be denied.

Summary

Administrators should use these server table facilities to grant remote access to
their system for authorized remote systems and users. Wild cards in originating
group patterns should be used judiciously, if at all. The administrator should
thoroughly examine every entry in his/her server table file.

Control Tables 3-41

C
on

tr
ol

 T
ab

le
s

dkdotab

Use this section as an aid in the editing of /etc/opt/dk/dkdotab. Refer also to the
dkdotab(4) manual page.

The CommKit Host Interface software package includes a sample dkdotab file
found in the directory /etc/opt/dk. Edit the same file to reflect your own commun-
ity of interest.

Within a typical network, it is not always possible to support the same or all of a
set of commands on all of the hosts in the data switch network. The CommKit
Host Interface software allows execution of a given command from a remote
host.

The dkdo command allows emulation of commands on a host requiring facilities
not present on the local host. When executing a command on a local host that
does not support the given command, dkdo searches the /etc/opt/dk/dkdotab file
for the remote host on which the command should be executed. dkdo then places
a call through the data switch network to the host that supports the specified
command. It sends any input files and arguments to the remote system, executes
the command there, and brings back any output files. The input files are placed
in a new directory in /tmp on the remote host, and any output files created as a
result of execution of the command are brought back to the local host on the
command’s completion. The input files in /tmp are removed after the command is
executed. The function of the dkdo command is controlled by a dkdotab control
table that, unless specified, defaults to the /etc/opt/dk/dkdotab file. This file
describes where commands are to be executed and the format of the arguments
passed to these commands.

Each dkdotab table entry is presented as follows:

command system flags options files

The table consists of one or more lines, each with five tab-separated fields as
shown above. Each time the command dkdo is executed, it scans this dkdotab file
for the first match with the command requested. If a match is found, the remain-
ing fields indicate:

system the host on which the command should be executed

3-42 Control Tables

C
ontrol T

ables
dkdotab

flags the flags affecting the operation of the dkdo command

options the command options available for this command and how the
options are parsed

files whether the files associated with this command are input or output
files, or both.

The /etc/opt/dk/dkdotab may consist of one or more lines; one for each unique table
entry. The dkdo command scans this table for the requested command, looking
for the appropriate system on which to execute it. The command field holds the
name of the command to be executed. The system field is the system on which
that command should be executed.

The flags field may contain several flags to direct the remote command execution.
The s flag indicates that the file names specified as input are prefixed with "s.",
and, therefore, the prefix has to be stripped off. The x flag specifies that the dkdo
program should request the rx service on the remote system rather than the do
service. Requesting the rx service executes the user’s .profile on that system before
the remote command. This is necessary when executing remote commands that
have special PATH or environment [see env(1)] needs. The standard do service
does not execute the user’s remote .profile script.

The options that are supported for the commands entered in the table are all
options that follow the conventional syntax [for example, most option syntaxes
(such as -opt arg and -optarg) are allowed, but unconventional syntaxes are not].
The delimiters ":" "<" ">" tell the /opt/dk/bin/dkdo program how to parse the com-
mand options. The values in the options field are delimited by four possible
operators (described in the dkdotab(4) manual page).

The files field is a description of the type of files that follow the options associated
with the command specified. If there is a colon (:) present in an entry in this field,
the flag that precedes it should be inserted in the command line before the com-
mand is invoked. This is done after the command line has already been parsed.

Following is an example of an entry in the dkdotab:

get fish sx r:c:i:x:a: >*

This example means that if the command getis specified, it should be executed
on the host fish. If an s. precedes the input argument file names, strip off the s.

Control Tables 3-43

C
on

tr
ol

 T
ab

le
s

dkdotab

before sending the command arguments to the remote system. Use the .rx ser-
vice. If any of the following options are specified, parse them in the following
manner (the arguments that follow these option flags are arguments associated
with that option whether they follow directly or indirectly after the option key
letter): r, c, i, x, a.

The meanings of these option key letters can be found in the manual page for the
respective command. The files associated with the execution of this command are
output files (>*).

dkuidtab

Refer also to the dkuidtab(4) manual page.

The file dkuidtab is found in the /etc/opt/dk directory. The file is updated by
authorize when a user from a remote host calls the local host for authorization
service, and is used by the dkserver program to obtain information on how to
map user IDs from incoming call requests to valid IDs on the local host.

The file consists of one or more lines and each line has three fields separated by
blanks:

originating-group local-login local-password

where,

originating-group consists of area/exchange/host.user[/key]. The
area/exchange/host is the originating data switch group of the remote
host. user is the user ID of the user on the remote host. The key contains
the value of the DKKEY environment variable (if any) on the remote host
at the time of authorization.

3-44 Control Tables

C
ontrol T

ables
dkuidtab

local-login is the login name of the user on the local host.

local-password is the encrypted password of the user on the local host, or ":"
if the user does not have a password.

Control Tables 3-45

C
on

tr
ol

 T
ab

le
s

dkuidtab

3-46 Control Tables

4 Administration

Introduction 4-1

Administrative Notes 4-1
UNIX System V Release 4 4-1
Files That Grow 4-3
dkitrc Script File 4-4
Linking of Host Interface Files 4-7
Special Device Files 4-8
Configuring uucp with d or g Protocol 4-10

Configuring Tables for Originating Calls 4-10
Configuring Tables for Receiving Calls 4-14

Using TLI Support 4-14
Configure netconfig File 4-15
Configure a Listener 4-15
Starting the Listener 4-17
Stopping the Listener 4-17
Verifying the Listener 4-18
Manually Restart the Port Monitor and Listener
Service 4-19
Configure Multiple Listeners 4-19
Configure Multiple TLI Interfaces 4-20
Configuring RFS to Use TLI 4-21
Configuring uucp to Use TLI 4-23
Other TLI Applications 4-26

Changing the Hardware Configuration
After the Initial Installation 4-27

Table of Contents i

Table of Contents

Changing the Number of Channels 4-28

Troubleshooting Facilities 4-29
Software Troubleshooting Procedures 4-29
Troubleshooting the Host Interface Communication 4-32
Reading Status and Statistics 4-34

Diagnostics 4-35
3B2 Computer Diagnostics 4-35
Data Switch Control Computer Looparound

Diagnostics 4-36
Local_loop 4-36
Remote_loop 4-37

CommKit Host Interface Error
Messages 4-38
Console Error Messages 4-38

Hardware Error Messages 4-39
Software Error Messages 4-40
Server Error Messages 4-41

Outgoing Call Error Messages 4-42

Printer Administration 4-50
Sharing a Printer on a Data Switch Network 4-51
Printer Configurations 4-52

Configuration 1: Connection to a Local Host 4-52
Configuration 2: Connection to a Data Switch Node;
Spooling Host Using Fiber 4-53
Configuration 3: Connection to a Data Switch Node;
PDD Connections 4-54

ii Table of Contents

Table of Contents

Configuration Procedures 4-55
Remote Host Configuration 4-55
Spooling Host Configuration Procedures 4-57
Data Switch Configuration Procedures 4-62

Troubleshooting Printer Problems 4-64
Printer Problems 4-65
dkdo Problems 4-66
dkcat Problems 4-67

Printer Flow Control 4-69
lp Subsystem Problems 4-69

CommKit Host Interface Exit Codes 4-69

Table of Contents iii

Table of Contents

iv Table of Contents

A
dm

inistration
Introduction

This chapter contains the following:

Notes on maintaining the CommKit Host Interface software

Procedures for setting up uucp and RFS

Procedures for setting up and using the TLI

Procedures for changing the hardware configuration

Procedures for administering the number of channels

Procedures for troubleshooting interface problems

Procedures for running diagnostics on the interface

Error messages that may be seen on your computer

Procedures for connecting, administering, and troubleshooting a printer
on the data switch network.

Note: RFS is not supported by the NCR UNIX System.

Administrative Notes

UNIX System V Release 4

The UNIX System V Release 4 has several new features that influenced the
design of the current CommKit Host Interface software release. This document
does not review UNIX System V Release 4, but you should be aware of the new
features for this release listed in Table 4-1.

Note: For additional information, refer to the documentation provided with
UNIX System V Release 4.

Administration 4-1

A
dm

in
is

tr
at

io
n

Administrative Notes

Table 4-1: UNIX System V Release 4 – New Features
_ ___

New Expanded Features Description_ ___
Directory restructuring In order to better support diskless workstations, the contents

of the directories /etc, /usr, /usr/spool, /usr/bin, /bin, /lib, /usr/lib,
and many others, have been modified. Many of the directories
used by CommKit Host Interface software and the lp software
have been moved or changed in UNIX System V Release 4.
You will have to be aware of these changes to configure the
network and printers._ ___

Symbolic links A symbolic link is a file that consists only of a reference to
another file. When a symbolic link is accessed, the referenced
file is the one that is actually accessed. A symbolic link differs
functionally from a regular link in a number of ways:
• Files from different file systems may be linked together.
• Directories as well as regular files may be symbolically

linked.
• A symbolic link can be created even if the named file does

not exist.
• Operations from sh such as cd ..may not work as expected.

Symbolic links are used to solve a problem caused by directory
restructuring. Existing applications and software (and users)
expect UNIX system files and commands to be in standard
places. In the cases where directory restructuring has caused a
standard file or command to move to a new directory, sym-
bolic links are used to link the old name to the new location._ ___

STREAMS Subsystem The UNIX system STREAMS feature has been heavily modi-
fied and all tty-based drivers have been converted to use the
STREAMS architecture. Several of the CommKit Host Interface
device drivers have also been converted to use STREAMS
features. This means that some aspects of device configuration
and troubleshooting will change as well._ ___

Long File Names The UFS file system type supports file names up to 255 charac-
ters long._ ___

_ ___

As a result of directory restructuring and other design decisions, many of the
files and commands have changed in the current release of the CommKit Host
Interface software as compared to earlier releases. In general, the directory
/etc/opt/dk contains subdirectories that hold most of the CommKit Host Interface
software files and commands. Table 4-2 below will help you locate files in the

4-2 Administration

A
dm

inistration
Administrative Notes

current CommKit Host Interface software release.

Table 4-2: File Location Changes
_ ___

File/Command Old Location New Location_ ___
User Commands /usr/lbin /opt/dk/bin_ ___
Administration Commands /etc /opt/dk/sbin_ ___
Host File /etc/dkhosts /etc/opt/dk/dkhosts_ ___
Server Control File /etc/dksrvtab /etc/opt/dk/srvtab/ (see Note)_ ___
Server user ID Mapping /etc/dkuidtab /etc/opt/dk/dkuidtab_ ___
dkdo Table /usr/lib/dkdotab /etc/opt/dk/dkdotab_ ___
Log Files /usr/adm /var/opt/dk/log_ ___
Server Lock Files /usr/spool/locks /var/opt/dk/log_ ___

_ ___

Note: In the current CommKit Host Interface software release, srvtab is a
collection of files in the directory /etc/opt/dk/srvtab. Each file contains
srvtab entries for the service indicated by the file name. Refer to the
srvtab(4) manual page for additional information.

Files That Grow

The following log files will grow continually unless they are periodically cleaned
out by the system administrator.

/var/opt/dk/log/dksrvlog a log of the server activity [see dksrvlog(4)]
/var/opt/dk/log/dkuidlog a log of all authorization attempts [see authorize(1M)]
/var/opt/dk/log/dkdaemonlog a log of dkdaemon operations [see dkdaemon(1M)]
/var/opt/dk/log/dkacct a log of data transfer and connection time [see dkdaemon(1M)]

Once a log file reaches the UNIX system maximum file size limit [see ulimit(2) in
the UNIX Programmer’s Reference Manual], no further log entries will be
appended to that file. It is suggested that the daily task of cleaning out the server
log files be put into the administrative cron table to be run during off-hours. An
alternative for a frequently rebooted system is to clean out the logs at every sys-
tem reboot by adding appropriate commands to the script /etc/init.d/dkitrc. The
daily server log may be saved in another file and inspected for messages contain-
ing the tokens ERROR, DENIED, TRAPPED, or FAILED. See dksrvlog(4) .

Administration 4-3

A
dm

in
is

tr
at

io
n

Administrative Notes

dkitrc Script File

The script /etc/init.d/dkitrc is invoked during all init state transitions with an argu-
ment of either start or stop, depending upon which init state is being entered.
Links to the file /etc/init.d/dkitrc in directories /etc/rc0.d and /etc/rc2.d determine
which argument will be passed to the script during invocation. See dkitrc(1M) for
the names of these additional links and a more detailed description of
/etc/init.d/dkitrc.

Once the CommKit Host Interface installation has been completed successfully,
/etc/init.d/dkitrc may be edited to automate the starting and termination of addi-
tional CommKit Host Interface services or to customize the operation of the
default server.

The /etc/init.d/dkitrc script also controls various CommKit Host Interface func-
tions when the dkdaemon process is started. You can modify this script to
modify your computer system number of channels, logging or accounting
records. The following display is the part of the code that starts the dkdaemon
process:

Lines are needed here to start dkdaemon either with defaults
by specifying ’dkdaemon’, or with options specified.
Note that if you start a dkdaemon process with an explicit
-i 0 for your first interface, you will need to provide
other daemon(s) with -i int_num, where "int_num" is the interface
number of the other interface(s) if they exist.
#
The other daemons can have different -c, -a, etc.
options, but should not have the -x and -t options.
For example, to start two daemons with different channel
number specifications, the following lines can be used:
/opt/dk/sbin/dkdaemon -i 0 -c 256 -x -t
/opt/dk/sbin/dkdaemon -i 1 -c 128

4-4 Administration

A
dm

inistration
Administrative Notes

Note that when specifying the -c option, the number of channels
must agree with the value set in the Data Switch.
#
Note that when specifying the -c option, the number of channels
should agree with the -c option on the dkdevs command line above.
#
By specifying just ’dkdaemon’ a single dkdaemon process
will service all interfaces and the x and t functions.
See the dkdaemon(1M) man page for more details.

/opt/dk/sbin/dkdaemon
if [$? -eq 0]
then

echo "dkdaemon process started"
fi

The operation of servers is controlled at two places in the script /etc/init.d/dkitrc.
The commands which start servers appear after the comment #start a
dkserver process , and the commands to terminate servers follow the com-
ment #stop a dkserver process .

The following display is the part of the code that starts and stops the dkserver
process:

start a dkserver process
add lines here to start dkserver automatically
for example: ’dkserver’ to take all defaults or
’dkserver -v 8 -i 1 -s server1 -l /var/opt/dk/log/dksrvlog1’
See the dkserver(1M) man page for more details

PATH="${PATH}:/opt/dk/bin" /opt/dk/sbin/dkserver
if [$? -eq 0]
then

echo "dkserver process attempting to start"
fi
;;

stop)
stop a dkserver process
/opt/dk/sbin/dkserver -t > /dev/null 2>&1

Administration 4-5

A
dm

in
is

tr
at

io
n

Administrative Notes

if [$? -eq 0]
then

echo "dkserver process stopped"
fi

The comments in the above code show the service name with the -s option. If no
service name is specified, it will be taken from the uname of the host. In either
case, this name must match the mnemonic name entered in the data switch con-
trol computer database. The line that starts the server specifies that /opt/dk/bin be
added to the default PATH variable. The PATH variable is used by the server
when starting processes requested by incoming calls. If the PATH variable is not
specified, the server will use the value defined in its environment. There are
additional options with which the server may be started.

If you are installing more than one CommKit Host Interface board, you will have
to start a server in the /etc/init.d/dkitrc script for each board. The default starts the
server for the first interface (interface 0). To start the server for an additional
interface, add a dkserver line with the -iX option (where X=1 for the second
interface) to the /etc/init.d/dkitrc script.

Refer to the manual page dkserver(1M). You can edit this script to save any of the
log files (dksrvlog, dkuidlog, dkdaemonlog, and dkacct).

dkitrc automatically reserves the channel groups defined in dkgroups(4) with the
following code:

Reserve any groups defined in /etc/opt/dk/dkgroups.
for group in ’grep -v ’^#’ /etc/opt/dk/dkgroups | cut -f1’
do

/opt/dk/sbin/dkmaint -g $group
done

Refer to the dkmaint(1M) and dkgroups(4) manual pages for more details on chan-
nel groups.

4-6 Administration

A
dm

inistration
Administrative Notes

Linking of Host Interface Files

We suggest you link /opt/dk/bin/dk to the names of other hosts and other
commonly-used destinations listed in the file /etc/opt/dk/dkhosts [see ln(1) in the
UNIX System V User’s Reference Manual]. For example, if the /etc/opt/dk/dkhosts
file contains an entry:

fish nj/shore/fish

and you link /opt/dk/bin/dk to fish as follows:

Note: In UNIX System V Release 4, symbolic links can exist across file systems
(see ln -s option.)

$ ln dk fish

Then the following two commands will be equivalent:

$ fish

$ dk fish

When using the dkdo command to provide distributed lp or other networked
services, it is suggested that the commands you list in the /etc/opt/dk/dkdotab be
linked to the command /opt/dk/bin/dkdo. This will allow the user to enter:

$ command

(where command is the command to be executed) and have the command execute
remotely on the host defined in the /etc/opt/dk/dkdotab for the command without
explicitly entering:

Administration 4-7

A
dm

in
is

tr
at

io
n

Administrative Notes

$ dkdo command

Refer to the Printer Administration section for more information on using dkdo to
provide network printer services.

Special Device Files

The CommKit Host Interface for UNIX System V Release 4 uses a new device
naming and numbering convention for the "special files" (or special device files)
in the /dev directory. Each special device file contains a major and minor device
number. For more than one CommKit Host Interface, the special device files con-
tain the same major device number but different minor device numbers.

The following are the directories that contain the special device files:

/dev/dk a directory containing raw dkhs special device files

/dev/dkt a directory containing dkty special device files

/dev/dkx a directory containing dkxqt special device files

/dev/dknp a directory containing dktli special device files.

Most CommKit Host Interface special device files are of the format x.yyy, where
x indicates the interface number and yyy the channel number.

In UNIX System V Release 4, there can be up to 262144 minor device numbers
per device (using 18 bits; the CommKit Host Interface product uses 16 of the
available 18 bits). This is an increase over the limit of 255 minor device numbers
in earlier releases. Minor device numbers used by the dkhs driver are comprised
of several bit fields that describe characteristics of the represented device. Each
16-bit minor device number is partitioned as shown in Figure 4-1.

Figure 4-1: Device Number Partitioning (16 bits)

815 0

Channel NumberInterfaceModifiers

4-8 Administration

A
dm

inistration
Administrative Notes

Channel number is nine bits and can represent 512 channels per interface. (Only 256 are
used.)
Interface can address eight different physical interfaces but two are currently supported.
Modifier bits are used to distinguish clone (dialer) and other special devices from normal
data channels.

The minor device numbering scheme and all bit definitions are fully specified in
the /usr/include/dkit/devices.h header file supplied with the software.

The dkhs special device files reside in the /dev/dk directory. Table 4-3 shows exam-
ples of the special files of a host having two CommKit Host Interface boards
installed.

Note: The special device files differ depending on the number of interfaces
supported in the current release.

Table 4-3: Special Device Files – Example – Two Interface Boards
_ __

Minor Device Number Description Special Files_ __
0 Diagnostic channel for interface 0 /dev/dk/diag0_ __
1 Control channel for interface 0 /dev/dk/ct10_ __

1-255 Data channels for interface 0 /dev/dk/0.001, etc_ __
512 Diagnostic channel for interface 1 /dev/dk/diag1_ __
513 Control channel for interface 1 /dev/dk/ctl1_ __

513-767 Data channels for interface 1 /dev/dk/1.001, etc_ __
4096 Dialer channel for interface 0 /dev/dk/dial0_ __
4608 Dialer channel for interface 1 /dev/dk/dial1_ __
8192 Default dialer channel /dev/dk/dial_ __

_ __

The minor device numbering scheme used by the dkhs driver provides for
addressing up to 512 data channels on each of eight physical interface boards.
The current release of the CommKit Host Interface software supports up to two
physical interfaces and 256 channels per interface. The remaining addressability
is reserved for future expansion.

The special files for the dkty and dkxqt drivers also follow the x.yyy format, but
there are no diagnostic, control, or dialer channels for those drivers.

Administration 4-9

A
dm

in
is

tr
at

io
n

Administrative Notes

You need not be concerned with creating or monitoring the special device files
since they are created automatically as they are needed. The format of these
numbers is described here for your information only. See dkdevs(1M) for addi-
tional information.

Configuring uucp with d or g Protocol

This section describes how to use the UNIX System V BNU with the CommKit
Host Interface software over the data switch network.

The three primary BNU services are uucp, ct, and cu. You can configure the
CommKit Host Interface to use one or more of the following protocols:

_ ___
Protocol Description_ ___

g The g protocol is a uucp protocol intended to work over noisy low-
speed phone lines using modems. It is possible, however, to set up
uucp to use g protocol over the CommKit Host Interface. Using the g
protocol, there will be additional overhead for error checking that may
not be necessary._ ___

d The d protocol is designed to operate over the error-free data switch
network. The d protocol is reliable and transfers blocks of data at a high
rate of speed._ ___

e The e protocol is designed to operate with TLI to access the CommKit
Host Interface. Refer to the section Using TLI Support for procedures on
how to set up uucp using TLI._ ___

_ ___

Note: If either the calling or the called host is not connected to the data switch
network through the CommKit Host Interface software, both ends must
use the less efficient g protocol.

Configuring Tables for Originating Calls

The uucp calls may be made to hosts attached to the data switch network by
means of a CommKit Host Interface, an RS-232 line (TY12 port), or through a
dialer. To accommodate these hardware configurations, the following entries are
needed in the originating host’s /etc/uucp/Sysfiles, /etc/uucp/Devices.cu,
/etc/uucp/Devices.cico, and /etc/uucp/Systems files.

4-10 Administration

A
dm

inistration
Administrative Notes

Note: The /etc/uucp/Devices.cu and /etc/uucp/Devices.cico files may have to be
created since they are not distributed with the BNU software. The mode,
owner, and group should be the same as the /etc/uucp/Devices file.

1 . For calls placed to remote hosts using d protocol:

Sysfiles:

service=cu devices=Devices.cu:Devices
service=uucico devices=Devices.cico:Devices

Devices.cu:

DKD,d DKd 0 Any DK \D

Devices.cico:

DKD,d DKd 0 Any DK \D.uucp

Systems:

host Any DKD,d 0 dialstring

dialstring is the data switch address of the remote host.

2 . For calls placed to remote hosts using g protocol:

Sysfiles:

Administration 4-11

A
dm

in
is

tr
at

io
n

Administrative Notes

service=cu devices=Devices.cu:Devices
service=uucico devices=Devices.cico:Devices

Devices.cu and Devices.cico:

DK,g DKg 0 Any DK \D
DK DK 0 Any DK \D

Systems:

host Any DK,g 0 dialstring in:--in: login word: passwd
host Any DK 0 dialstring in:--in: login word: passwd

host is the name of the remote host

dialstring is the data switch address of the RS-232 port on the node

login is the user ID of uucp on the remote host

passwd is the password of the remote uucp login.

Note: The g protocol can be used by uucp over TLI. Refer to the section Using
TLI Support for information.

3 . For calls placed to remote hosts using a dialer attached to the data switch
node using the g protocol:

Sysfiles:

4-12 Administration

A
dm

inistration
Administrative Notes

service=cu devices=Devices.cu:Devices
service=uucico devices=Devices.cico:Devices

Devices:

ACU - 0 Any DK dialstring dialername \D

dialstring is the service name of the dialer on the data switch node

dialername is the name of the dialer as defined in the Dialers file.

Note: The ACU entries need not go into the files Devices.cu and Devices.cico
since they are the same for both BNU services.

Systems:

host Any ACU baud tel# in:--in: login word: passwd

host is the name of the remote host

baud is the baud rate of the ACU

tel# is the telephone number of the remote host

login is the user ID of uucp on the remote host

passwd is the password of the remote uucp login.

Note: For calls made to hosts attached to the data switch node by means of an
RS-232 line (TY12 port), or calls placed through a dialer, the remote TY12
port must have flow control by device and by the data switch node
turned off for uucp traffic. Otherwise, failures will occur in the transmis-
sion of files or in Uutry attempts.

Administration 4-13

A
dm

in
is

tr
at

io
n

Administrative Notes

Configuring Tables for Receiving Calls

This section describes configuration of the host interface tables so uucp calls can
be received through the data switch network on a host equipped with the
CommKit Host Interface software.

The dkserver program may receive uucp service requests in the form of requests
for the uucp service. srvtab entries of the following form are required to satisfy
requests for the uucp service:

area/exch/*! uucp u luucp %s uucico
*! uucp u nuucp %s uucico

More information on the above server table entries can be found in the section
Fixed User ID Mapping in Chapter 3.

Using TLI Support

TLI support allows TLI applications to operate over the the AT&T data switch
network. For some TLI applications, such as uucp and RFS, you must configure
the standard UNIX system listener [see listener(1M) in the UNIX System V System
Administrator’s Reference Manual]. For RFS service you may alternatively config-
ure your system to use dkserver(1M) instead of listener(1M). Refer to the section
Spawning a TLI Application in Chapter 3.

This section discusses how to configure the UNIX system listener for RFS and
uucp. If you want to configure other TLI applications, refer to the documentation
provided with those applications.

The TLI software supports the "connection oriented" and "connection oriented
with orderly release" transport services of TLI. Refer to the UNIX System V
Release 4 Programmer’s Guide for information concerning these services.

The Networking Support Utilities (NSU) package must be properly configured
before RFS and uucp can be used.

The following sections describe how to:

4-14 Administration

A
dm

inistration
Administrative Notes

Configure the netconfig file. This file contains configuration information
for the listener and other TLI applications that use the Network Selection
Facility.

Configure the listener. Although some TLI applications do not require a
listener, uucp and RFS do. Refer to the documentation delivered with
your application for information concerning the need for a listener.

Start the listener.

Stop the listener.

Verify the listener.

Manually restart the port monitor and listener service.

Configure multiple listeners.

Configure multiple TLI Interfaces.

Configure TLI applications.

For more information on setting up uucp, RFS, or a listener, refer to the UNIX
System V Release 4 Network User’s and Administrator’s Guide.

Note: RFS is not supported by the NCR UNIX System.

Configure netconfig File

To configure the /etc/netconfig file, add the following to the file:

netid semantics flags family proto device lookups

dktp0 tpi_cots_ord - datakit - /dev/dktp0 /usr/lib/straddr.so

This creates information for the netid or net_spec dktp0, with the device file name
for access to /dev/dktp0. Subsequently, the netid will be referred to as a net_spec.

Configure a Listener

A standard NSU program, listener, is used to listen for service requests on the
network. The listener is the network server for each host and must be properly
configured for applications, such as RFS, to work.

Administration 4-15

A
dm

in
is

tr
at

io
n

Administrative Notes

Your computer may be connected to more than one network (for example, data
switch and StarLAN). Each network must have its own listener. The default
device name (net_spec) of the CommKit Host Interface network provider is dktp0,
and the clone device, which provides access to the network, is /dev/dktp0. See
dktli(7) for more information.

To configure the listener:

1 . Verify that the transport device for your interface exists as defined in the
netconfig file. The default for interface 0 is /dev/dktp0 [see dktli(7)].

2 . Verify that the listener’s address (service name) has been configured on
the data switch. This is done by using the verify addresscommand on the
node console. The listener’s address is specified by the -l option of the
nlsadmincommand. The listener’s address must be different than the one
used by dkserver, otherwise the listener will fail to start. If the service
name has not been configured, use the enter addresscommand on the data
switch node console to enter the host name in upper case characters.

Note: The listener’s address is usually the host name in upper case char-
acters [see uname(1M) in the UNIX System V System Administrator’s
Reference Manual] since the lower case host name is already used
as the service name by the dkserver program. If the service name
of your system does not contain any alphabetical characters, you
must select a new service name for the listener, since the listener
and the dkserver program would have the same service name.

3 . Configure the listener by using the sacadmand nlsadmincommands.

The following is an example of configuring a listener for interface 0 with
an address of nj/shore/GULL. The listener uses the net_spec name of dktp0,
area nj, exchange shore, and the host name bird.

Note: In this example the listener name, GULL, appears in upper case.

4-16 Administration

A
dm

inistration
Administrative Notes

sacadm -a -p dktp0 -t listen -c "/usr/lib/saf/listen dktp0" \
-v `nlsadmin -V` -n10 -y"datakit GULL"

nlsadmin -a0 -c "/usr/lib/saf/nlps_server" -y "NLPS server" -w root dktp0

nlsadmin -l "nj/shore/GULL" dktp0

Note: UNIX System V Release 4 Service Access Facility (SAF) will automati-
cally start and stop the listener on init state change. Refer to sacadm(1M)
and nlsadmin(1M) in the UNIX System V Network Administrator’s Reference
Manual for more information.

Starting the Listener

The standard SAF starts all defined listeners on transitions to init state 2. It is
normally unnecessary to start the listener manually. However, the listener for
the dktp0 network can be started manually with the following command:

sacadm -s -p dktp0

See sacadm(1M) and nlsadmin(1M) in the UNIX System V Network Administrator’s
Reference Manual.

Stopping the Listener

The standard SAF stops the listeners for all net_specs on transitions to single-user
mode. Usually it is unnecessary to stop the listener manually. The listener for
net_spec dktp0 can be stopped with the command:

sacadm -k -p dktp0

Administration 4-17

A
dm

in
is

tr
at

io
n

Administrative Notes

Verifying the Listener

To verify a listener has been configured properly follow the procedures in this
section. Display the status of the listener on net_spec dktp0 by entering:

sacadm -l -p dktp0

If the status is ENABLED, the listener has been configured properly.

If the status is STARTING, repeat the sacadmcommand every 30 seconds until
the system displays ENABLED, INACTIVE, or FAILED.

If the status is INACTIVE or FAILED:

1 . Check the listener log file for error information.

2 . If the listener cannot open the device, verify that the device is correct and
dkdaemon had been started with the option -t.

3 . Because it may have terminated, verify that the dkdaemon is active.
Examine the file /var/opt/dk/log/dkdaemonlog for errors reported by dkdae-
mon for the component dknp. If this component failed to start, verify that
the file /dev/dknp/daemon exists. See dkdaemon(1M).

4 . Verify the netconfig file; refer to the section Configure netconfig File, earlier
in this chapter. Refer also to netconfig(1M) in the UNIX System V Network
Administrator’s Reference Manual.

5 . Verify the listener address on the data switch is restored to service.

6 . Manually start the listener; refer to the section Starting the Listener, earlier
in this chapter.

7 . Display the listener configuration by entering:

sacadm -l -p dktp0

4-18 Administration

A
dm

inistration
Administrative Notes

8 . If the status is still INACTIVE, call your support hotline.

Note: The listener must be ENABLED before it will accept incoming calls.

Manually Restart the Port Monitor and Listener Service

In the case of reinstallation of CommKit Host Interface software, once the previ-
ous version of the software is removed, the /dev/dktp/X devices (X is the interface
number) which were previously defined in /etc/netconfig will be removed. If
rpcbind(1M) attempts to open these non-existent devices, the following error
message will be generated for each interface:

/dev/dktp X cannot open connection: System error

This message indicates the dktp devices have not had a chance to be created after
the software was reinstalled. The TLI server processes will appear to be
ACTIVE, but will fail as soon as they are accessed because rpcbind has not suc-
cessfully bound the server to an address.

For this reason, or at any time the listener process(es) fail, the administrator must
start and stop the port monitor and network listener service of the SAF hierarchy
by using the sacadmcommand:

sacadm -k -p dktp X

sacadm -s -p dktp X

Configure Multiple Listeners

TLI support is initially configured for a single listener with a net_spec (network
specification) of dktp0. It is possible, however, to configure multiple listeners.
The maximum number of listeners permitted is limited by the number of servers
supported per interface by the data switch (see the appropriate AT&T Data
Switch Administration Guide).

Administration 4-19

A
dm

in
is

tr
at

io
n

Administrative Notes

Multiple listeners can be used to make some listener services public (for example,
uucp) while keeping others private (for example, RFS and private applications),
or when the incoming call load must be shared between multiple interfaces.

sacadmrequires each listener on a system have a unique net_spec. Since the
dktp0 net_spec is used by the listener distributed with the software, a new and
unique net_spec must be assigned to each new listener configured. For example,
an additional listener on interface 0 may be configured with a net_spec of dktp0a.

A new /dev entry must be created for each additional listener by making links
[see ln(1) in the UNIX System V User’s Reference Manual] to the appropriate
/dev/dktpX entry. The following is an example of creating the necessary /dev entry
for the new dktp0a listener:

ln /dev/dktp0 /dev/dktp0a

Once the /dev entry has been created for the new dktp0a listener you must do the
following:

1 . Configure the netconfig file for dktp0a; refer to the section Configure
netconfig File

2 . Configure the listener for dktp0a. You must use a unique service name,
refer to the section Configure a Listener

3 . Verifying the listener; refer to the section Verifying the Listener.

Configure Multiple TLI Interfaces

TLI supports access to each physical interface installed on your system. To con-
figure additional interfaces to operate with TLI:

1 . Verify that the special device files /dev/dktpX (where X = 0 or 1) exist by
entering:

4-20 Administration

A
dm

inistration
Administrative Notes

ls -l /dev/dktp X

If the devices exist, go to step 3. If the /dev/dktpX files do not exist, go to
step 2.

2 . To create the necessary special device files, use the following command:

/opt/dk/sbin/dkdevs -Mmaj_list

Where maj_list is a comma separated list of major number with no spaces
between entries. The major numbers to include in maj_list are obtained
by executing getmajor 776.

3 . Configure netconfig file; refer to the section Configure netconfig File. Add
entries for additional interfaces in which you substitute dktpX for dktp0.

4 . Configure the listener. You must use a unique service name, refer to the
section Configure a Listener. Add entries for additional interfaces in which
you substitute dktpX for dktp0.

5 . Verify the listener; refer to the section Verifying the Listener. Substitute
dktpX for dktp0.

Configuring RFS to Use TLI

Note: RFS is not supported by the NCR UNIX System.

Refer to the UNIX System V Release 4 Network User’s and System Administrator’s
Guide for additional information on configuring RFS.

After installing the CommKit Host Interface software on your computer system,
configure RFS using the root login:

1 . The RFS utilities package must be installed on your system. If this package
is not installed, load it from its media.

Administration 4-21

A
dm

in
is

tr
at

io
n

Administrative Notes

2 . Verify that the listener has been configured with its full network address.
Failing to properly configure the listener network address will result in
difficulties when attempting to start RFS. The current network address for
the dktp0 listener may be printed with the following command:

nlsadmin -l - dktp0

Note: Network device is dktp0 and the address should be the full network
address. For the data switch, the full network address must be used
where the RFS documentation calls for the address.

3 . Follow the procedures in UNIX System V Release 4 Network User’s and Sys-
tem Administrator’s Guide to set up RFS.

4 . Verify that the RFS service code 105 has been configured by entering:

nlsadmin -v dktp0

5 . If the RFS service code 105 has not been configured, use the nlsadmincom-
mand to configure the RFS service.

nlsadmin -a105 -c"/usr/net/servers/rfs/rfsetup" -y "RFS server" dktp0

6 . Start RFS by one of the following methods:

If the host is the primary name server, enter:

4-22 Administration

A
dm

inistration
Administrative Notes

rfstart

If the host is not a primary name server, enter the following,
where network_address is the full network listener address of the
primary name server:

rfstart -p network_address

Configuring uucp to Use TLI

This section describes how to use the UNIX System V BNU, which contains uucp,
to run over TLI. uucp can be configured to run over TLI using either the g or e
protocol; TLI does not support the d protocol.

Note: The cu and ct cannot run over TLI unless a suitable TLI Terminal Inter-
face package is available. The CommKit Host Interface software does
not provide a TLI Terminal Interface package. The standard BNU
software can be used over the TLI support.

Protocol for BNU Over CommKit Host Interface Channels

The standard protocol used by uucp (g protocol) is designed for communications
over telephone lines.

The e uucp protocol is designed for use with error-free communications channels
using Transport Library Services. The e protocol uses the TLI to access the
CommKit Host Interface software STREAMS drivers for connections to the data
switch network [see dktli(7)]. This protocol may only be used when both the cal-
ling (local) and the called (remote) hosts are connected to the data switch net-
work by means of a TLI-compatible version of the host interface.

If either the calling or the called host is not connected to the data switch network
through the host interface, both ends must use the less efficient g protocol.

Administration 4-23

A
dm

in
is

tr
at

io
n

Administrative Notes

Configuring Tables for Originating Calls

The e or g protocol may be used to call any remote host that is connected to the
data switch network by means of a TLI-compatible version of the host interface.
Originating calls using the e protocol access the host interface by means of the
TLI-compatible network provider. The following entries are necessary to sup-
port originating calls using the e or g protocol:

Devconfig:

service=uucico device=NP push=tirdwr

Devices.cico:

NP,eg dktp0 - - TLIS \D nlsnp

Dialers:

nlsnp "" "" NLPS:000:001:101\N\c

Systems:

host Any NP - area/exchange/ADDRESS

where area/exchange/ADDRESS is the full network address of the listener running
on the called system host.

For example, if your system fish wants to be able to communicate with system
bird the entry on the system fish would be as follows:

4-24 Administration

A
dm

inistration
Administrative Notes

bird Any NP - nj/shore/GULL

If you wish to use uucp over multiple interfaces, perform the following pro-
cedures for each interface:

1 . Verify that the other TLI interfaces have been configured as described in
the section Configure Multiple dktli Interfaces, earlier in this chapter.

2 . Modify the following files, where host is the remote host,
area/exchange/ADDRESS is the full network address of the listener running
on the remote host, and X is the interface number.

Devconfig:

service=uucico device=NP X push=tirdwr

Devices.cico:

NPX,eg dktp X - - TLIS \D nlsnp

Systems:

host Any NP X - area/exchange/ADDRESS

For more information on using the BNU with a TLI-compatible network pro-
vider, refer to the following files:

/etc/uucp/Sysfiles /etc/uucp/Systems /etc/uucp/Devconfig
/etc/uucp/Devices /etc/uucp/Dialers

Administration 4-25

A
dm

in
is

tr
at

io
n

Administrative Notes

Note: These files contain information that will help in understanding TLI confi-
guration.

Refer also to the UNIX System V Release 4 System Administrator’s Reference Manual.

Configuring Tables for Receiving Calls Using TLI

To configure the necessary CommKit Host Interface tables to allow uucp calls to
be received through the data switch network on a host equipped with the
CommKit Host Interface software and TLI Software follow the procedures in this
section.

uucp calls can be made to your system through the CommKit Host TLI Interface
in the following two ways; each requires a special table entry:

1 . The network listener may receive uucp service requests (listener service
code 101) from other hosts equipped with a TLI-compatible version of the
CommKit Host Interface software and must be configured to accept those
requests. The listener is configured to accept requests for service code 101
when the CommKit Host Interface software is initially installed. The com-
mands to perform this configuration are:

nlsadmin -auucp -c "/usr/lib/uucp/uucico -r0 -iTLI -unuucp" -yuucp dktp0

nlsadmin -a101 -c "/usr/lib/uucp/uucico -r0 -iTLI -unuucp" -yuucp dktp0

2 . The network listener may receive login service requests which ultimately
result in a uucp user logging in (with a login and passwd) and running the
/usr/lib/uucp/uucico program. This scenario requires the installation of
TLI-compatible login service software that is not part of the standard
CommKit Host Interface software distribution.

Other TLI Applications

To configure other TLI applications on your computer, use the documentation
provided with that application and review the configuration sections for RFS and
uucp.

4-26 Administration

A
dm

inistration
Administrative Notes

When configuring other TLI applications remember:

The net_spec is dktp0, dktp1, and so on for interface 0, 1, etc.

The full network address must be used where system addresses are
required. Refer to the section Configuring uucp to Use TLI. For example, the
nlsadmincommand would use area/exchange/NODE for the -l option.

TLI support is composed of a multiplexer, dktm [see dktli(7)].

The CommKit Host Interface software does not support connectionless
TLI applications.

Changing the Hardware Configuration After
the Initial Installation

This section describes how to add or remove host interface boards.

To change the number of interfaces on your computer:

1 . Log in as root.

2 . Shut down the system:

cd /
shutdown -y -g0 -i0

3 . Install or remove an interface board according to the procedure described
in Chapter 2.

4 . Run diagnostics on the interface board. Refer to the section Diagnostics.

Administration 4-27

A
dm

in
is

tr
at

io
n

Changing the Hardware Configuration After the Initial Installation

5 . Start the interface. Refer to the section Verify Operation in Chapter 2.

6 . Modify the /etc/init.d/dkitrc script. Refer to the section dkitrc Script File.

Changing the Number of Channels

Note: The number of channels defined on your computer must match the
number of channels defined on the data switch node.

To change the number of channels on your computer:

Add the -c option to the line that invokes the dkdaemon program in the
/etc/init.d/dkitrc file (default 64). The following example changes the
number of channels to 128 for all interfaces in the /etc/init.d/dkitrc file:

/opt/dk/sbin/dkdaemon -c128

You must modify or add the -c option to the line that invokes the dkdevs
program in the /etc/init.d/dkitrc file (default 64). The following example
changes the number to 128, as in step 1.

Note: You may receive an error message if the number of channels
used to start dkdaemon does not match the number of channels
configured in the data switch database. Use the verify cpmcom-
mand to confirm the number of channels configured in the data-
base. The NCHLSfield of the verify cpmcommand is the value
that should match the value of the -c option used by dkdaemon
(refer also to Figure 4-2).

4-28 Administration

A
dm

inistration
Changing the Number of Channels

/opt/dk/sbin/dkdevs -c128 -M maj_list

To change the number of channels in the data switch node:

Enter the following on the data switch node console, where xx is the slot
number of the CPM-HS module. You will be prompted for additional
information.

CC0> remove cpm xx
CC0> change cpm xx
CC0> restore cpm xx

Note: If sufficient memory is not available on the data switch node, it may be
necessary to reboot the node.

Troubleshooting Facilities

The CommKit Host Interface package provides troubleshooting facilities that
may be used to verify an interface operation or help isolate problems.

Software Troubleshooting Procedures

The following sequence of steps should be used to locate problems with the
CommKit Host Interface software. This sequence should be used after a failure is
detected in the execution of a CommKit Host Interface command.

Administration 4-29

A
dm

in
is

tr
at

io
n

Troubleshooting Facilities

1 . Verify that the dkdaemon process is running.

2 . Verify that the dkserver process is running.

3 . Verify that the collection of files in /etc/opt/dk/srvtab exist and are properly
configured. Refer to srvtab(4).

4 . Examine the server log (/var/opt/dk/log/dksrvlog) for ERROR, DENIED, or
FAILED messages which indicate a problem with the service requested.

5 . Verify that the number of channels defined in the data switch control com-
puter database is consistent with the number of channels defined in the
/etc/init.d/dkitrc file (refer to the section Changing the Number of Channels
After the Initial Installation). Execute the command

CC0> verify cpm XX

(where XX is the number of the slot in the data switch node in which the
CPM-HS module resides) on the data switch console.

6 . Verify that the CommKit Host Interface devices were made correctly by
examining the /dev/dk directory for the device nodes referencing the data
switch. For more information, refer to the section Special Device Files, ear-
lier in this chapter.

7 . Verify that the server and listener names are properly defined by using
the verify commands as shown in Figure 4-2 (using the names assigned in
Figure 1-2 as an example).

4-30 Administration

A
dm

inistration
Troubleshooting Facilities

Figure 4-2: verify Commands

CC0> verify cpm XX

94-05-17 13:08:42 NODE=ocean
M verify cpm XX

MODULE ADDRESS: XX
MODULE TYPE: cpmhs NCHLS: 256
SERVICE STATE: in SERVICE TYPE: unix
HOST: bird
COMMENT:

BILLING PERIODIC BILLING
off off

GROUP CHNLS CHNL RANGE EPN CUG PROFILE
bird 254 2-255

CC0> verify host bird

94-05-17 13:08:50 NODE=ocean
M verify host bird

HOST: bird
CURRENT GROUP/ADDRESS ASSIGNMENTS:
GROUP MNEMONIC X.121 LEVEL SERVICE STATE
bird bird local in

GULL local in

CC0> verify group bird address

94-05-17 13:09:08 NODE=ocean
M verify group bird address

GROUP: bird TYPE: local DEV/HOST: bird
DIRECTION: 2way PASSWORD: no
ROUND ROBIN SERVICE: none

ADDRESSES:
MNEMONIC X.121 LEVEL
bird local
GULL local

Administration 4-31

A
dm

in
is

tr
at

io
n

Troubleshooting Facilities

Troubleshooting the Host Interface Communication

If the server does not show ACTIVE and SERVING in the server log (default is
/var/opt/dk/log/dksrvlog) or if the data switch console does not show the CPM-HS
module connected to the host to be in the SERVING state, then the following
should be executed on the host:

Note: If you have more than one CommKit Host Interface board installed and
you are having problems with more than one interface, perform the fol-
lowing procedures for each interface.

1 . Stop the server process on the host if the server log does not show
ACTIVE and SERVING. If the server log shows ACTIVE and SERVING
but the CPM-HS module is not ACTIVE, you do not have to kill the server
process.

2 . Stop the dkdaemon process by using the pscommand to determine the
process number of the dkdaemon process and terminate it by using the
kill command.

3 . Start the dkdaemon process by entering the following using the same
options as you have configured in your dkitrc file.

/opt/dk/sbin/dkdaemon options

where options is a list of options found in /etc/init.d/dkitrc.

4 . Reset the interface by executing the following command:

/opt/dk/sbin/dkmaint -r -i X

where X is the interface number.

5 . Start dkserver with the following command by entering the same options
as you have configued in your dkitrc file:

4-32 Administration

A
dm

inistration
Troubleshooting Facilities

/opt/dk/sbin/dkserver options

6 . Enter a display connectionscommand on the data switch node console to
verify that the host is ACTIVE and SERVING.

Note: It may take two minutes for dkserver to recover automatically if it
is still running; however, outgoing calls to other hosts should
work immediately.

CC0> disp conn mod XX

where XX is the slot number in the data switch node where the CPM-HS
module is installed.

7 . If the server still does not start, verify the server’s address is in service and
execute the following commands on the data switch console:

CC0> restore addr <name>
CC0> remove cpm XX
CC0> restore cpm XX

<name> is the server’s address

XX is the slot number of the CPM-HS module.

8 . Check that the server log shows ACTIVE and SERVING and the CPM-HS
module shows SERVING.

9 . If the server still will not start successfully, verify all fiber optic connec-
tions between the host transmitter and receiver and the data switch node.

Administration 4-33

A
dm

in
is

tr
at

io
n

Troubleshooting Facilities

10 . Run diagnostics. Refer to the Diagnostics section.

If the diagnostics fail, refer to the section Run Diagnostics on CommKit Host Inter-
face Board in Chapter 2.

Reading Status and Statistics

The CommKit Host Interface software package provides the user with a function
to retrieve status information from the drivers.

The dkstat command [found in the directory /opt/dk/sbin – see dkstat(1M)]
returns status information maintained by the dkhs driver during operation. This
information is then formatted and printed on the user’s terminal.

The dkhs driver currently maintains several cumulative counts associated with
the low-level protocol. Examples include the numbers of bad blocks received
and retransmitted blocks. A description of the fields can be found in the
dkstat(1M) manual page.

You must log in as root to execute dkstat(1M). A sample output is provided
below:

/opt/dk/sbin/dkstat

Interface Statistics

x_intr = 31132
x_xhf = 0

r_intr = 143
r_nobuf = 0
r_parity = 0
r_frame = 0
r_ovrun = 0

Channel Summary Statistics

x_msgs = 30325
x_blocks = 31336
x_bytes = 410602

4-34 Administration

A
dm

inistration
Troubleshooting Facilities

x_enq = 0
x_init = 41

r_msgs = 5638
r_blocks = 3187
r_bytes = 47599
r_badblk = 0
r_rej = 0
r_enq = 2
r_ireq = 8
r_init = 36

Diagnostics

Two types of diagnostics are available: 3B2 Computer off-line diagnostics and
looparound diagnostics run on the data switch control computer.

3B2 Computer Diagnostics

For the 3B2 computer, diagnostics are executed off-line in the same manner as
diagnostics for all other 3B2 feature boards.

Two phases are run each time the 3B2 computer is booted. Full diagnostics
should be run on new boards or when problems are encountered with the host
interface.

To run all phases of diagnostics, shut the system down to the firmware mode,
boot the diagnostics monitor, dgmon, and enter:

Administration 4-35

A
dm

in
is

tr
at

io
n

Diagnostics

DGMON>dgn dkpe x ph=1-15

Where x specifies the interface (0 or 1) on which you want to run the diagnostics.
To run the diagnostics on all interfaces, omit the variable x. Refer to the Diagnos-
tics section in Chapter 2 for complete details.

Data Switch Control Computer Looparound
Diagnostics

Two loop-around tests are available on the data switch control computer:

Local_loop tests the CPM-HS module and CPM-HS paddle board.

Remote_loop tests the CPM-HS module, paddle board, and the fiber optic link.

Local _loop

The local_loop test requires you to remove the module’s fiber optic cable from
the CPM-HS paddle board and replace it with a loop-around cable. The CPM-
HS module must be out of service for this test.

The command diag cpmenables you to perform the local_loop test. See the fol-
lowing example for a typical local_loop test.

4-36 Administration

A
dm

inistration
Diagnostics

CC0> diag cpm
MODULE ADDRESS:11
TEST TYPE [command_logic, module_reset,

local_loop, remote_loop: +(local_loop)]: local_loop
REPETITIONS [1-1000; ’c’ for continuous: +(1)]: <Enter>

Replace the fiber optic link connection on the paddle board
with a loop-around connector.
This task must be performed within 60 seconds!
Type yes To Continue, no To Stop Command:
CONTINUE TESTING [yes, no: +(yes)]: yes

diagnose cpm 11 local_loop
Loop-Around Test Successful

Remote _loop

The remote_loop test requires you to remove the fiber optic cable at the host
interface board and connect the two cable ends with a looparound connector.
The CPM-HS module must be out of service for this test.

The command diag cpmenables you to perform the remote_loop test. See the fol-
lowing example for a typical remote_loop test:

CC0> diag cpm
MODULE ADDRESS:11
TEST TYPE [command_logic, module_reset,

local_loop, remote_loop: +(local_loop)]: remote_loop
REPETITIONS [1-1000; ’c’ for continuous: +(1)]: <Enter>

Ask the host computer administrator to replace the fiber
optic link connection on the FIB paddle board with a loop-around connector.
This task must be performed within 60 seconds!
Type yes To Continue, no To Stop Command:
CONTINUE TESTING [yes, no: +(yes)]: yes

diagnose cpm 11 remote_loop
Loop-Around Test Successful

Administration 4-37

A
dm

in
is

tr
at

io
n

CommKit Host Interface Error Messages

The following sections identify error messages that may be seen on your com-
puter and error messages that users may see when executing some of the com-
mands that make outgoing calls over the CommKit Host Interface.

Console Error Messages

This section describes several error messages that may appear on the console as a
result of errors detected in the CommKit Host Interface software and hardware.

Messages that begin with the string:

dkhs N:

are printed by the dkhs driver and refer to the specified interface or unit device.
N indicates the interface number.

Messages that begin with the string:

dkux(N):

are printed by the dkux STREAMS module and refer to the specified circuit or
channel.

The following message may occur during heavy call setup/takedown loads:

(DKUXn) Garbage UNIXP Message Received on Interface <n>
xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx

This message indicates an unknown control message has been received but has
not affected the call processing on the interface. The Garbage message (indicated
by xxxxxxxx) is printed to allow for analysis of other unusual conditions.

4-38 Administration

A
dm

inistration
CommKit Host Interface Error Messages

Certain heavy host and node call processing conditions can cause the data switch
note to send a control message of the incorrect length. In such a case, the host
will display the following:

NOTICE: dkux_unixp_parse: wrong length (20)
xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx
xxxxxxxx

to indicate the control message is not of the expected length. The fields (indicated
by xxxxxxx) following the NOTICE line above indicate the actual contents of the
incorrect message. The condition is non-fatal because the protocol from the node
and the host will resend the message to recover.

Hardware Error Messages

If the CPM-HS module in the data switch node goes out of service after the
CommKit Host Interface server is started, if the CPM-HS is removed from ser-
vice during operation, or if a power failure occurs on the data switch node, an
error message will appear on your host console indicating the loss in communi-
cation with the data switch node.

NOTICE: dkhs N: Interface is down: RX-MUTE

The error type RX-MUTE defines a receive error. The message TX-HANG indi-
cates a transmit error condition.

NOTICE: dkhs N: Interface is down: REASONS

The error indicates the software on the interface board has stopped running
because of administrator action or an error condition for a stated REASON.

Administration 4-39

A
dm

in
is

tr
at

io
n

CommKit Host Interface Error Messages

dkhs N: Interface Restarted

This message indicates the interface has automatically restarted after a previ-
ously detected error.

dkpe N: FAULT x%x during sysgen

This message indicates that a hardware problem occurred while initializing the
interface board. The board is not properly installed or is bad.

dkpe N: No response to sysgen

This message indicates that the interface board did not respond to an initializa-
tion request within the required time interval. The board may be bad or there
may be a software configuration error.

dkpe N: Problem with Fiber Cable

This message usually indicates that the dkdaemon process has tried to start the
interface software when the CPM module is out of service or the fiber cable is not
properly connected.

Software Error Messages

The following error message may be encountered when there is a problem with
the remote end point’s requested URP transmitter window size.

4-40 Administration

A
dm

inistration
CommKit Host Interface Error Messages

dkux_dial_connect: undersize rbufsz 8 for (0,5), using default (8)

This is a notice which indicates the requested window size was unspecified or
less than the minimum that the host’s URP transmitter can send. The message
notifies the user that the virtual circuit may have difficulty during its data
transfer phase.

Server Error Messages

When communications between your computer and the CommKit Host Interface
node are interrupted, the server detects the problem and prints the following
error message on the host console:

* * * * * * * * * *
* * * The CommKit Server for servername is having problems
* * * Please get someone to attend to it.
* * * The last error was: date
* * * dkmgr: Unable to contact CommKit for Server servername
* * * * * * * * * *

servername is the name of the server reporting the problem. The servername
must be properly defined in the data switch node’s database.

date is the date, time, process ID, and channel number of the prob-
lem. This has the following form:

Sep 25 08:45:40 (112) [0.000]

The number in parentheses is the process ID of the dkserver pro-
cess encountering the problem. The number in brackets [0.000] is
in x.yyy format, where x indicates the interface number and yyy
indicates the channel number upon which the error occurred.

To clear this error message, examine the contents of the dksrvlog file for addi-
tional information and check the state of the CPM-HS module on the data switch

Administration 4-41

A
dm

in
is

tr
at

io
n

CommKit Host Interface Error Messages

node console and all hardware connections.

When service is restored to the CPM-HS module, the following message will
appear on your console:

dkhs N: Interface Restarted

Outgoing Call Error Messages

The following are error messages that are not necessarily hardware related, but
may appear when placing an outgoing call through the CommKit Host Interface.
Error codes from the data switch node are interpreted by the CommKit Host
Interface software and a descriptive message is printed at the terminal.

For example, consider the following entry and error message:

$ dk nj/shore/bird

dkdial(intf 1): Can’t connect to nj/shore/bird.rl.vx, dk_errno 4: Destination not recognized

This indicates the destination does not exist or the network does not allow the
host access to the destination.

The error messages are described below:

Access denied

The call was denied by the remote server or network security. See
dkserver(1M). This error can also occur if this host attempted to set up a
server, but the data switch control computer database is not prepared to
accept such a setup from this host. This can be caused by:

1 . The server name is not defined in the data switch control computer data-
base

4-42 Administration

A
dm

inistration
CommKit Host Interface Error Messages

2 . The name is not assigned to a group

3 . The group is not assigned to the host-connected CPM-HS module.

Address too long

The call was denied because the length of the dialstring was larger than
the network maximum.

All channels busy

All assigned ports/channels are in use or are marked as not available by
the remote endpoint.

All trunk channels busy

One of the network control computers has run out of some resource and is
unable to process the call at this time.

Auto dialer failed to initiate call. Try again

The autodialer on the called port responded to the data switch node and
failed during dialing. If this message appears more than twice in succes-
sion, contact the data switch Network Administrator.

Bad parameter

The dkdial(3X) routine was called with an invalid parameter.

Call did not go through. Try again.

The autodialer on the called port responded to the data switch node and
failed during dialing. If this message appears more than twice in succes-
sion, contact the data switch Network Administrator.

Call Failed

Unknown call setup or remote host error.

Connection broken. Try again later

The call cannot be completed. The connection was broken enroute to the
destination. Try again.

Could not complete your call. Try again

The call could not be completed because:

Administration 4-43

A
dm

in
is

tr
at

io
n

CommKit Host Interface Error Messages

— The autodialer failed to complete the dialing sequence, or

— The port connected to the autodialer was removed from service
during the call.

Destination not recognized

Some part of the requested destination is not defined in the network. The
network does not allow this host to have access to the requested destina-
tion. The requested destination is not well formed (too many slashes).

Dial to vlp error

The call could not be completed because an error occurred converting the
dialstring to vlp format.

Dialed number busy
Dialed number is busy

The call was dialed successfully and a busy signal was detected.

Dialer error

The call could not be completed due to an error detected by an old autodi-
aler.

Dialstring too long

The call was denied because the length of the dialstring was larger than
the network maximum.

Directory Assistance

The user has requested directory assistance.

Dkserver: Call on a busy device or call collision, try again.

The call could not be accepted because the host device is busy or because
the incoming call collided with an outgoing call. A busy device is one that
is being cleaned up from a prior call or a device that is held open by some
lingering process.

You may also see this error message on an incoming call from a DESTINA-
TION prompt displayed as error code 136.

4-44 Administration

A
dm

inistration
CommKit Host Interface Error Messages

Note: If you try to contact a remote host from the DESTINATION: prompt, any
one of the errors 130– 136 may occur. The error message will be identi-
fied by its appropriate error code in the following error message where
xxx is the code number. (Refer to the manual page dkerr(3X) for more
information on error messages codes.)

ERROR DURING CALL SETUP. CALL SYSTEM
ADMINISTRATOR. CODE: xxx

Dkserver: Can’t chroot. Call System Administrator

The call could not be completed because the remote server could not
change root to the home directory of the caller on the remote host.

You may also see this error message on an incoming call from a DESTINA-
TION prompt displayed as error code 134.

Dkserver: Can’t open line. Call System Administrator

The call could not be completed because the remote host interface server
could not open the data switch special device file needed to accept the call.
See dkdevs(1M).

If you are using the dk command and this error occurs, it may be due to
improper configuration of dkdaemon on the machine you are calling. See
the dkdaemon(1M) manual page for more information on the -x option.

You may also see this error message on an incoming call from a DESTINA-
TION prompt displayed as error code 130.

Dkserver: Can’t push your streams module.

The call could not be completed because the configured STREAMS
modules could not be pushed onto the open channel.

You may also see this error message on an incoming call from a DESTINA-
TION prompt displayed as error code 131.

Dkserver: Can’t set/get circuit parameters: Call System Administrator.

The call could not be accepted because the dkserver process could not
communicate with the host device. Either the incoming initialization or
buffer size could not be set or the the receiving buffer size could not be

Administration 4-45

A
dm

in
is

tr
at

io
n

CommKit Host Interface Error Messages

returned in the answer.

You may also see this error message on an incoming call from a DESTINA-
TION prompt displayed as error code 135.

Dkserver: Invalid protocol requested.

The call could not be completed because the remote server did not under-
stand the connection protocol.

You may also see this error message on an incoming call from a DESTINA-
TION prompt displayed as error code 132.

Dkserver: srvtab not readable. Call System Administrator

The call could not be completed because the server tables (files in
/etc/opt/dk/srvtab) on the remote host were unreadable or damaged.

You may also see this error message on an incoming call from a DESTINA-
TION prompt displayed as error code 133.

Endpoint hung up

The endpoint hung up the call. This is not an error.

Facility not subscribed

The facility on the SIM was not subscribed to.

Hop count exceeded

The call could not be completed because the hop count configured for this
node was exceeded.

Host configuration mismatch. Call Network Administrator

The call was rejected because the host channel picked for the outgoing call
is not configured on the network. Contact the data switch Network
Administrator.

Host protocol error

The call could not be completed because of an error detected in the host
protocol.

Insufficient CIR at module

The call could not be completed because the module receiving the call
does not have sufficient resources to support the requested committed
information rate (CIR).

4-46 Administration

A
dm

inistration
CommKit Host Interface Error Messages

Invalid or missing phone number

The user has neglected to type the phone number required to make a
phone call as in dkcu dialer_name.phone_number. The phone_number is
synonymous with the dialstring.

Mismatched GOS endpoints

The call can not be completed because the originating and receiving end-
points of a call have the grade of service (GOS) configured differently.

Network congestion--Call forward error. Try again later

The call cannot be completed due to a lack of resources needed by a trunk
in the call path. Try again.

Network congestion--Call initiation failure. Try again

The call cannot be completed because a message usually sent between
processes during call setup was not sent. Wait a short time then call again.

Network congestion--Call timeout. Try again.

The call cannot be completed. No response was received and the call
attempt timed out. Try again.

Network congestion--Channel allocation error. Try again later.

The call cannot be completed because there is no free channel in the data
switch control computer database. Wait a short time before trying to call
again.

Network congestion--Connection error. Try again later

The call cannot be completed because a connection cannot be made. Wait
a short time before trying to call again.

Network congestion--Trunk call collision. Try again

The call cannot be completed because of a call collision in the trunk. Wait
a short time and try the call again.

Network hung up

The network hung up the call.

Administration 4-47

A
dm

in
is

tr
at

io
n

CommKit Host Interface Error Messages

Network routing error

Due to a network configuration error, the call is being sent and received
over the same trunk.

No answer from dialed number

The call was dialed successfully but the autodialer did not get an answer.

No carrier tone detected
No carrier tone was detected

The call was dialed successfully and answered; however, no carrier tone
was detected by the autodialer.

No diagnostic channel

The call could not be completed because a diagnostic channel is not avail-
able.

No initial dial tone. Try again later.
No initial dial tone detected

The autodialer on the called port may have a bad telephone line. The port
has been marked as bad and removed from the autodialer hunt group.

No response from autodialer. Try again

The autodialer on the called port failed to respond to the data switch node.
The port has been marked as bad and removed from the autodialer hunt
group.

No secondary dial tone. Try again later.
No secondary dial tone detected

The autodialer was signaled to wait for a secondary dial tone in the dial-
ing sequence and no such dial tone was detected.

Open channel error

The call could not be completed because an error occurred opening the
channel.

Please supply a valid phone number

The user has neglected to type the phone number required to make a
phone call as in dkcu dialer-name.phone-number. The phone-number is
synonymous with the dialstring.

4-48 Administration

A
dm

inistration
CommKit Host Interface Error Messages

Receive window too small

The call could not be completed because the receive window size is too
small.

Remote node not answering

A connection cannot be completed because a data switch trunk or com-
mon data switch control computer database somewhere in the network
path is inoperable.

Server already exists

This host attempted to set up a CommKit Host Interface server, but the
data switch control computer database already knows a server by that
name.

Server not answering

The requested server name is not in service. No interface hardware is
assigned to the requested name. The interface hardware assigned to the
requested name is not in service or is not operational. The remote server
may not answer for reasons of its own. See dkserver(1M).

Service mismatch

The service on the SIM did not match the request.

SIM all channels busy

All assigned ports/channels on the SIM are in use.

SIM bad contact

The call could not be completed due to SIM resource congestion.

SIM no access

The call was denied by the remote side.

SIM no contact

The SIM rejected the call.

Splice completed

The connection endpoints were successfully spliced together.

Administration 4-49

A
dm

in
is

tr
at

io
n

CommKit Host Interface Error Messages

Splice failed

The connection endpoints could not be successfully spliced together.

Transmit window too big

The call could not be completed because the transmit window size is too
big.

Trunk busy

The call could not be completed because a trunk in the call path is busy.

Trunk configuration mismatch. Call Network Administrator

The call was rejected because a trunk in the call path is not properly con-
figured. Contact the data switch Network Administrator.

Trunk not answering

The call could not be completed because a trunk in the call path is not in
service.

Unsupported baud rate

The requested baud rate is not supported by the autodialer.

Urp error

The call could not be completed because of an internal protocol error.

Vlp to dial error

The call could not be completed because an error occurred converting vlp
format into a dialstring.

Printer Administration

This section describes the procedures for connecting, administering, and troub-
leshooting a printer on a data switch network. This section assumes that you
have a working knowledge of the Line Printer (LP) Spooling Utilities. Refer to
the UNIX System V Release 4 System Administrator’s Guide for information on

4-50 Administration

A
dm

inistration
Printer Administration

administering LP Spooling Utilities.

UNIX System V Release 4 has printer set-up menus under the standard Opera-
tion, Administration, and Maintenance (OA&M) interface. Within the menus
provided by OA&M there are menu selections to Configure Printers on Remote
Machine. This selection controls other distributed printing features of UNIX Sys-
tem V Release 4 that work over TCP/IP and other supported protocols.

These OA&M programs eventually execute standard lp commands which are still
supported in UNIX System V Release 4. This document will provide the tradi-
tional lp commands (lpadmin, lpsched, accept,and enable, etc.) so that if you are
networking a group of UNIX System V Release 4 and earlier UNIX hosts, you
can use one consistent set of lp commands on all the hosts. If you wish to use the
OA&M to configure your printers, however, you may do so. Consult your UNIX
System V Release 4 documentation for OA&M administration of printers.

The procedures that follow define set up procedures for CommKit Host Interface
software running on UNIX System V Release 4. You can interconnect hosts of
various releases together to share printers. The printer set-up procedures for ear-
lier UNIX system releases will be slightly different. Refer to the documentation
for those systems for specific information.

Sharing a Printer on a Data Switch Network

To allow several hosts to share a printer in the data switch network, one host
must be configured as a spooling host and all other hosts on the network must be
configured as remote hosts to eliminate printer contention. A spooling host is
defined as the only host on the network that can receive print jobs from a remote
host and schedule them on a printer connected to the data switch node or to the
host itself. A remote host is a nonspooling host that uses the dkdo command to
send its print jobs to the spooling host.

There are at least three ways to connect a printer to a data switch network. Each
has advantages and disadvantages, and require different interface hardware and
configuration procedures.

Before continuing with this section it may be helpful to read the dkdo(1C),
dkcat(1C), and dkdotab(4) manual pages.

Administration 4-51

A
dm

in
is

tr
at

io
n

Printer Administration

Printer Configurations

Configuration 1: Connection to a Local Host

Figure 4-3 shows the configuration of a printer directly connected to one host.
This is the simplest way for hosts interconnected with a data switch to share a
printer. No special configuration of the data switch or the UNIX lp software is
needed. In this case all hosts use a printer directly connected to one host. That
is, the printer is connected to one host’s serial or parallel interface independent of
the network. The host with the printer connection is designated as the spooling
host.

Figure 4-3: Printer Directly Attached to One Host

host)

Cable
Optic
Fiber

Data switchCable
Optic
Fiber

M

S
H
/

P
C

S
H
/

M
P
C

S
H
/

M
P
C

Cable
Optic
Fiber

HOST R

HOST B
from
Job

HOST RHOST A

Job
 from

HOST B

Job
 from

HOST A
from
Job

host)
(remote
HOST B

host)
(remote
HOST A

RS-232 or Parallel Interface

(spooling

Y

Job from

PRINTER

HOST BJob
 from Job from

HOST A

HOST RHOST R

In this configuration, the remote hosts, Host A and Host B, send their print jobs
to the spooling host, Host R, using the dkdo command. Host R spools the print
jobs from the remote hosts and sends the print jobs to the printer (Y) using the lp
service.

4-52 Administration

A
dm

inistration
Printer Administration

Configuration 2: Connection to a Data Switch Node; Spooling
Host Using Fiber

Figure 4-4 shows the configuration of a printer connected to a spooling host
which, in turn, is connected to the data switch network via the fiber interface. In
this configuration, the spooling host uses dkcat to send the print jobs to the
printer.

Figure 4-4: Network-Connected Printer; Spooling Host Using dkcat

Data switchCable
Optic
Fiber

T
M

12
Y

S
H
/

P
C

S
H
/

M
P
C

S
H
/

M
P
C

Cable
Optic
Fiber

Fiber Optic Cable

HOST B

HOST R

from
Job

host
(spooling
HOST RHOST A

Job
 from

HOST B

Job
 from

Y

HOST A
from
Job

host)
(remote
HOST B

host)
(remote
HOST A

Job from

RS-232

PRINTER

HOST BJob
 from Job from

HOST A

HOST RHOST R

In this configuration, the remote hosts, Host A and Host B, send their print jobs
to the spooling host, Host R, using the dkdo command. Host R spools the print
jobs from the remote hosts and sends the print jobs to the printer (Y) using the
dkcat command.

Administration 4-53

A
dm

in
is

tr
at

io
n

Printer Administration

Note: In most cases, the lp subsystem is used to control the print jobs. An
interface program (model file) must be used to have lp send the print jobs
using dkcat.

Configuration 3: Connection to a Data Switch Node; PDD
Connections

Figure 4-5 shows the configuration of a data switch network with the spooling
host interfaced with the printer using the RS-232C port. With this configuration,
the spooling host uses an asynchronous tty port and a Predefined Destination
(PDD) to send a print job to the printer rather than dkcat. This configuration
allows you to receive status messages back from the printer (such as a PostScript
Printer). The RS-232C port on the spooling host is connected to the network by a
TY12 port, and a PDD is set up from the spooling host TY12 port to the printer
TY12 port.

Figure 4-5: Network-Connected Printer Using PDD

PDD

S
H
/

M
P
C

Job

Y

HOST A
from
Job

host)
(remote
HOST B

host)
(remote
HOST A

Job from

RS-232

PRINTER

HOST BJob
 from Job from

HOST A

HOST RHOST RHOST R

host)

 from

RS-232

Cable
Optic
Fiber

T

12
Y

Data switchCable
Optic
Fiber

T
M

12
Y

S
H
/

P
C

S
H
/

M
P
C

Cable
Optic
Fiber HOST B

from

(spooling
HOST RHOST A

Job
 from

HOST B

Job

In this configuration, the remote hosts, Host A and Host B, send their print jobs

4-54 Administration

A
dm

inistration
Printer Administration

to the spooling host Host R using the dkdo command or other remote execution
facility. Host R spools the print jobs of the remote hosts and sends them to the
printer (Y) using the lp command over the asynchronous tty port and PDD.

Note: Although the spooling host has a direct virtual circuit to the printer by
means of the PDD, the printer is also accessible using the dkcat
command. That is, the printer can still be known to the data switch node
through its service name, if set up to do so.

Configuration Procedures

Remote Host Configuration

To set up the remote host for all configurations:

1 . Log on as root.

2 . Save the original version of lp and lpstatby entering the following:

mv /usr/bin/lp /usr/bin/Olp
mv /usr/bin/lpstat /usr/bin/Olpstat

3 . Link dkdo to lp and lpstatby entering the following:

ln -s /opt/dk/bin/dkdo /usr/bin/lp
ln -s /opt/dk/bin/dkdo /usr/bin/lpstat

4 . If you wish to allow users to cancel lp jobs from the remote system, save
the original version of /usr/bin/cancel and link dkdo to cancelby entering:

Administration 4-55

A
dm

in
is

tr
at

io
n

Printer Administration

mv /usr/bin/cancel /usr/bin/Ocancel
ln -s /opt/dk/bin/dkdo /usr/bin/cancel

5 . Add the network address of the spooling host to the /etc/opt/dk/dkhosts file.

system dflx dialstring -

system is the name of the spooling host.

dflx is the class of services required:

d — dkdo
f — file transfer
l — remote login
x — remote execution

dialstring is the network address of the spooling host.

– is a null field.

6 . Define the lp service by adding the following to the /etc/opt/dk/dkdotab file:

lp system - d:n:o:t -c:<*
lpstat system - - -

where system is the name of the spooling host as specified in the /etc/opt/dk/dkhost
file.

Note: Refer to dkdotab(4) manual page for a description of other fields.

7 . For the ability to cancel an lp job from the remote host, add the following
to /etc/opt/dk/dkdotab:

4-56 Administration

A
dm

inistration
Printer Administration

cancel system - - -

Spooling Host Configuration Procedures

Local Host — Configuration 1

To set up the spooling host for the configuration shown in Figure 4-3 follow the
steps below.

1 . For the spooling host to receive jobs from the remote host using the dkdo
command, the /etc/opt/dk/srvtab/do file must contain:

* do R/vx *n>9 /opt/dk/bin/dkdo dkdo:-p

where * allows all hosts from all areas and exchanges to make dkdo requests.
You may wish to limit which machines have such permissions. See srvtab(4)
manual page.

2 . In the previous step, it is assumed that all users on the remote hosts have
logins on the spooling host, and that their user IDs match. If you wish to
allow users from remote hosts who do not have a login on the spooling
host to print jobs, create a guest user login on the spooling host and add
an entry to the /etc/opt/dk/srvtab/do file with the following:

* do R/vx guest /opt/dk/bin/dkdo dkdo:-p

Data Switch Node (Spooling Using Fiber) — Configuration 2

Set up the do service by completing steps 1 and 2 under Local Host — Configura-
tion 1. Refer to Figure 4-4. The spooling host must be set up to use dkcat to send
jobs to the printer. To configure the standard UNIX system lp code, the user
must be logged on to the UNIX system as root or lp. For the lp system to access
the printer on a data switch, a number of UNIX system files must be edited or

Administration 4-57

A
dm

in
is

tr
at

io
n

Printer Administration

created. Some of these files provide printer-specific information and are used by
the lp system; others are used by the CommKit Host Interface software to access
the printer on the data switch network. The files are described in the paragraphs
below.

The model file is a shell file (see sh(1M) in the UNIX System V System
Administrator’s Reference Manual) used to interface the line printer spooling sys-
tem to a specific type of printer. This file is found in the directory /etc/lp/model.
The file is created based on the specific characteristics of the printer, so that all
control characters are properly interpreted. The model file is designed to be
shared by printers of the same type; when an additional printer is added, the
model file is copied into the interface file with the same name as the name given to
the printer.

The model file must be modified to invoke the /opt/dk/bin/dkcat command.
Either the output of the printer-specific script may be piped into the dkcat com-
mand or the file name may be provided as an argument to dkcat. The dkcat
command sends files from the host to a printer connected to a network endpoint.
The model script must exit with the exit code returned by dkcat. Refer to the
dkcat(1C) manual page for more information.

Create a model file and place it in /etc/lp/model/printer_name. The printer_name is
the name you wish to use to access the printer. A sample model file for a dumb
serial printer is shown in Figure 4-6.

Figure 4-6: Sample model File

lp Model file for a dumb serial line printer connected over
data switch. The name of this model file should be the node
service name for the printer. The script is enclosed in () and
its output is piped into the dkcat command. The lp subsystem
executes this script with arguments as follows:
#
arg1 - Print job number
arg2 - The machine/login in the format host!user
arg3 - Additional banner information from lp -t
arg4 - Number of copies

4-58 Administration

A
dm

inistration
Printer Administration

Figure 4-6. Continued

arg5 - Not used
arg6-rN - full pathname of file(s) to be printed
#
Some lines contain samples of how to save debug information in a file
like /tmp/printlog. To get debugging turn on lines such as the following:
#
echo `date` job "$1" user "$2" >> /tmp/printlog

printer=`basename $0`
x="xx"

(
echo "\014\c"
echo "$x\n$x\n$x\n$x\n"
banner "$2"
echo "\n"
user=`grep "^$2:" /etc/passwd | line | cut -d: -f5`
if [-n "$user"]
then

echo "User: $user\n"
else

echo "\n"
fi
echo "Request id: $1 Printer: `basename $0`\n"
date
echo "\n"
if [-n "$3"]
then

banner $3
fi
copies=$4
echo "\014\c"
shift; shift; shift; shift; shift
files="$*"
i=1
while [$i -le $copies]
do

for file in $files
do

cat "$file" 2>&1
echo "\014\c"

done
i=`expr $i + 1`

done
echo "$x\n$x\n$x\n$x\n"

Administration 4-59

A
dm

in
is

tr
at

io
n

Printer Administration

Figure 4-6. Continued

echo "\n$x\n$x\n$x\n$x"

uncomment sleep 15 if last lines of output
are lost, in particular for slow devices or SAM endpoints
sleep 15
Change /dev/null to /tmp/printlog to debug problems on line below
) | /opt/dk/bin/dkcat $printer 2>&1 >>/dev/null
retcode=$?

next line shows how the exit code of dkcat can be logged
echo "Job $1 returned $retcode\n" >>/tmp/printlog

the return code $? from dkcat is returned to the lp system.
exit $retcode

The interface file is needed for each printer known to lp. This file is a shell file
located in the /etc/lp/interfaces directory. It is a duplicate copy of the model shell
file and is executed by lpschedto send a job to the printer. This file will be created
by the lpadmin command later using the model file as input.

The dkhosts file allows the CommKit Host Interface software on the spooling host
to access the printer on the network. The printer name and its network dialstring
with class p must be entered in the file /etc/opt/dk/dkhosts. For example, for the
demoprt printer, use an entry such as the following:

demoprt p nj/localnet/demoprt -

For more information, refer to the dkhosts(4) manual page. This information is
used by the dkcat command to establish a connection to the printer. The printer
must be given a unique destination name. The name must be the same as the
Mnemonic Address/Service Name given to the TY/SAM endpoint where the
printer is connected. The printer can be configured on the spooling host by enter-
ing the following commands on the spooling host:

4-60 Administration

A
dm

inistration
Printer Administration

/usr/lib/lpshut
/usr/lib/lpadmin -p printer_name -mprinter_name -v/dev/null
/usr/lib/lpsched
/usr/lib/accept printer_name
enable printer_name

printer_name is the name of both the model and interface files used to inter-
face the line spooling system to a specific type of printer.

-m option is used if the model file exists in the /etc/lp/model directory.

lpadmin command copies the /etc/lp/model/printer_name file to the
printer_name file in the interface directory /etc/lp/interfaces.

-v option specifies the special character device where the printer is con-
nected. Since the printer is being accessed by dkcat, this device is always
the null device (/dev/null).

To send a print job to the printer, lpschedopens the printer device (specified by
the -v option) and makes it stdin and stdout and executes the interface file for the
printer. Refer to the UNIX System V Release 4 System Administrator’s Guide for
more details on the lpadmin command.

dkcat Notes

The utility program, dkcat, is designed to enable the transmission of files to
remote printers connected to the data switch network. The dkcat command is
invoked in the model file with the data switch destination of the remote printer
and other options, which can include the file to be printed. The specified desti-
nation is mapped into a full dialstring by means of the /etc/opt/dk/dkhosts file.

Certain printers, such as Imagen Laser Printers, require character translations.
The -I option provides that translation in the dkcat program. Every character in
the file is examined, and if a character is found to be one of two special characters
– 0x9e (eof character) or 0x9b (quote character) – special processing occurs.

To override the definition of the eof character and/or the quote character, use
the -q option. dkcat takes an argument of the form <quotechar>,<eofchar>.
There must be no spaces between the character definitions and the comma; the
character definitions must be in decimal format. The decimal values for 0x9e and
0x9b are 158 and 155, respectively.

Administration 4-61

A
dm

in
is

tr
at

io
n

Printer Administration

If the -F option is specified, a form feed character (0xc) is sent after each file. This
option is used to make the beginning of each file start on a new page.

Additionally, dkcat does not provide any traditional stty function. Much of the
stty function is meaningless (e.g., baud rates and parity settings). However,
other capabilities such as conversion of CR characters to CR and NL characters or
expansion of tab characters into spaces may be needed. These can be easily per-
formed in the model file by using a standard UNIX system command such as sed
as a filter for the data to be sent to the printer. Alternately, most printers can be
configured to do such translation either by jumper or switch settings or by send-
ing them special codes. Refer to the printer manual.

dkcat does not read data from the data switch network and, hence, does not sup-
port any flow control mechanisms. Flow control mechanisms are provided
between the TY/SAM endpoints and the connected printer. This means, in par-
ticular, that printers which write status messages back (such as PostScript
Printers) are not well supported by dkcat. To support such printers, users
should connect the printer directly to the spooling host as shown in Figure 4-3 or
use PDD as shown in Figure 4-5.

dkcat exits with a non-zero value if it fails to establish a connection to the printer
or if it encounters an error in data transmission. Refer to the section CommKit
Host Interface Exit Codes for the exit codes. The exit codes for command failures
and data transmission failures can also be found in /usr/include/dkit/sysexits.h on
any host with CommKit Host Interface installed.

Data Switch Node (PDD Connected) — Configuration 3

Set up the do service by completing steps 1 and 2 under Local Host — Configura-
tion 1. Refer to Figure 4-5. In this configuration the lp software sees the printer
as directly connected to the spooling host serial port, therefore, no special lp
administration is needed. There may be some flow control issues, however, refer
to the section, Printer Flow Control, later in this chapter.

Data Switch Configuration Procedures

Connection to a Local Host

Refer to Figure 4-3. Because the printer is not connected to the data switch node,
and the hosts on the network use standard dkdo services, no special setup is
needed on the data switch node.

4-62 Administration

A
dm

inistration
Printer Administration

Connection to a Data Switch Node

Refer to Figures 4-4 and 4-5. To configure the printer on the data switch node
follow the steps below.

1 . Execute the remove ty, change tyand restore tycommands from the data
switch console. The system will prompt for additional information. The
following is an example of configuring a printer with the change tycom-
mand:

Note: BAUD RATE, PARITY, and FLOW CONTROL should be set to values
needed for your specific configuration.

MODULE ADDRESS:26
CHANNEL NUMBER:4
COMMENT:"up to 60 chars double quoted"
SERVICE TYPE: host
GROUP:lpprint
BAUD RATE:9600
EXTERNAL BAUD RATE:2400
PARITY: off
FLOW CONTROL OF TY-12 BY DEVICE: xon_xoff
FLOW CONTROL OF DEVICE BY TY-12: xon_xoff
IS AN AT&T VDM CONNECTED TO THIS LINE: no

2 . The following is an example of configuring the PDD (refer to Figure 4-5)
with the change tycommand:

Note: BAUD RATE, PARITY, and FLOW CONTROL should be set to values
needed for your specific configuration.

Administration 4-63

A
dm

in
is

tr
at

io
n

Printer Administration

MODULE ADDRESS:26
CHANNEL NUMBER:5
COMMENT:"up to 60 chars double quoted"
SERVICE TYPE: terminal
GROUP:lporg
BAUD RATE:9600
EXTERNAL BAUD RATE:2400
PARITY: off
FLOW CONTROL OF TY-12 BY DEVICE: xon_xoff
FLOW CONTROL OF DEVICE BY TY-12: xon_xoff
IS AN AT&T VDM CONNECTED TO THIS LINE: no
NODE ECHOES USER INPUT:yes
CALL HOLD: off
PREDEFINED DESTINATION:demoprt
CONNECT-TIME BILLING: off
ATTENTION CHARACTER:none

where demoprt is the service name of the printer. The value of the PREDE-
FINED DESTINATION string should be the same as the printer address. The
example given assumes that the group lpprint has been entered and that the
printer address demoprt has also been entered and associated with the group
lpprint.

Troubleshooting Printer Problems

The configuration chosen to connect the printer will dictate the troubleshooting
approach. Table 4-4 lists the probable problems that apply to specific printer con-
figurations.

Table 4-4: Troubleshooting Printer Problems
_ __

Configuration

Printer connected to Figure Possible Problems_ __
Local Host 4-3 • Printer problems

• lp subsystem problems
• dkdo problems.

_ __

_ __

Table 4-4: continued on next page

4-64 Administration

A
dm

inistration
Printer Administration

Table 4-4: Continued
_ __

Data Switch Node 4-4 • Printer problems
(Spooling Using • dkcat problems
Fiber) • lp subsystem problems, especially with the way dkcat is

used in the model file
• Configuration problems with the way the printer is
attached to the data switch network
• dkdo problems._ __

Data Switch Node 4-5 • Printer problems
(PDD) • lp subsystem problems

• Configuration problems with the way the printer is
attached to the data switch network
• Configuration problems when the spooling host’s serial
port is attached to the data switch network
• Configuration problems with the PDD
• dkdo problems._ __

_ __

Printer Problems

The printer configurations shown in Figure 4-3 (connected to a local host) and
Figure 4-5 (connected to a data switch node using PDD) use the printer as though
no network were involved. Refer to the UNIX System V Release 4 printer docu-
mentation to troubleshoot printers.

If the printer is connected to the spooling host serial port by a PDD:

Disconnect the printer from the data switch

Directly connect the printer to the host serial port

Retest the printer functions by queuing an lp job on the spooling host.

If the printer does not work in this configuration, the problems are not related to
the data switch node or CommKit Host Interface software.

Administration 4-65

A
dm

in
is

tr
at

io
n

Printer Administration

dkdo Problems

The dkdo control files and commands are not configured properly if you are able
to queue an lp job on the spooling host but are unable to send a print job from a
remote host to the spooling host. If this occurs:

Verify the general connectivity of the remote host to the spooling host.
That is, can you perform dk, dkcu, and other CommKit Host Interface
software operations? If not, check the data switch node configuration and
the proper installation of the CommKit Host Interface software.

Check the configuration of dkdotab, srvtab, and dkhosts entries.

Verify that the lp and lpstatcommands on the remote host have been
linked to dkdo.

A simple test of the dkdo function can be done by adding an entry for a basic
UNIX system command, such as dateor unameto the dkdotab file on the remote
host. The system field for the dkdotab entry should be the hostname of the local
machine. Refer to the section dkdotab in Chapter 3 for more information. For
example, add the unamecommand to the remote system’s dkdotab, and execute
the following on the remote system:

dkdo uname -a

This will execute the unamecommand on the spooling host and the name and
UNIX system configuration information from the spooling host should be
printed on your terminal. If this operation fails, then your remote host to spool-
ing host connections need to be investigated.

If jobs correctly queue for some users, but not others, it may be that user logins
on the remote host are unknown on the spooling host. That is, the srvtab entries
are such that the remote execution of lp by dkdo (that is, the do service) is being
refused. If users on the remote systems do not have logins in the spooling host,
create a guest login on the spooling host and set up srvtab to map unknown user
logins to that login.

4-66 Administration

A
dm

inistration
Printer Administration

dkcat Problems

When using the printer configuration shown in Figure 4-4 (connected to a data
switch node using fiber), a printer model file must be created on the spooling host
that uses dkcat to send a print file to a printer connected to the network. This
arrangement requires the lp control programs (lpsched, etc.) to be properly con-
figured and running. If lp jobs are not being sent to the printer, the first step is to
see if the print jobs are being properly queued. The lpstat -twill display the status
of printers and jobs. If print jobs are being properly queued but not being sent to
the printer, try connecting to the printer using dkcat manually. That is, execute
the following in the spooling host:

banner this is a test | dkcat printer_name

where printer_name is the service name of your network-connected printer. If the
banner this is a test appears on the printer (without the usual lp header) this
means that the data switch node configuration, dkcat command, and CommKit
Host Interface software are all operating correctly and it is the lp software or con-
figuration that is at fault. It is important to check the model file. Try manually
executing the lines in your model file that call dkcat and see if any errors are
displayed.

Before doing an exhaustive test of dkcat:

Verify that the printer is properly configured.

Verify that the printer is on-line with no paper or ribbon faults.

Execute the printer’s local test mode, if it has one.

Enter the service name of your printer on any terminal connected to the
data switch. After a connection has been made to the printer additional
characters typed on the terminal should appear on the printer.

Returns an Error

The exit code of dkcat gives a reason for failure; refer to the section CommKit Host
Interface Exit Codes.

Administration 4-67

A
dm

in
is

tr
at

io
n

Printer Administration

Fails to Make a Connection With the Printer

The stderr message usually gives enough information to investigate the cause of
a connection failure. If the printer is found to be busy, make sure there is no con-
tention for the printer port from multiple sources in the network. Two or more
hosts may be establishing a connection to the same printer. Examine the
appropriate data switch configurations to determine what hosts are directly
interfacing to the printer. Make sure only one host is configured as the spooling
host for the printer.

Data Transmission Problem

There are two common reasons for this problem: the spooling host may be run-
ning out of resources or a connection is broken in the network during data
transmission. Using dkcat, send a file to a terminal which is known to be func-
tioning properly. If dkcat still fails during data transmission, it is most likely that
the system is running low on resources. Check the value of the system tunable
parameters. Use the strstat function of the crashcommand to look for problems
with STREAMS resources.

If dkcat succeeds (exit code 0) but data is still being lost, it may be the printer
connection which is incorrect. In this case, monitor the network port to printer
line using a breakout box or any other appropriate equipment and check if DTR
is being toggled while a job is being transmitted. Check for any other intermit-
tent signals.

Works but Partial Data Loss

If printer output indicates that data is lost in different sections of the file, the flow
control setting must be checked between the network port and the printer. If
flow control is working correctly, recheck the hardware (i.e., network port,
printer cable, printer connector, and printer itself).

If printer output indicates that only the end section of the file is lost, check the
printer and monitor the line between the network endpoint and the printer to see
if the remaining section has been sent to the printer and is in the printer buffer. If
the printer is found off-line and putting it on-line prints the remainder of the file,
the problem may be the printer connector.

4-68 Administration

A
dm

inistration
Printer Administration

Printer Flow Control

As a flow-control mechanism, some printers send XON/XOFF characters to the
network and also toggle DTR. Since dropping DTR causes the network endpoint
to drop the network connection, a connector change is required for these printers
so that DTR remains high during flow control. To do this, tie RTS (pin 4) to DTR
(pin 20) from the printer and sever the original DTR connection from the printer.

lp Subsystem Problems

If the complete job prints correctly when sent from dkcat directly, but not when
the lp command is executed on the spooling host, the problem may be in the lp
subsystem. Recheck the model file and check the correct operation of lpsched,
lpadmin, accept, enable, and the rest of the UNIX system lp commands. Refer to
the UNIX System V Release 4 documentation for additional lp information.

CommKit Host Interface Exit Codes

The following table lists the CommKit Host Interface command exit codes. When
a command such as dkcat fails to execute properly, the sh will receive a non-zero
exit code which you can display by entering echo $?.

_ ___
Return Code Meaning_ ___
0 successful termination
2-64 command syntax errors
65 data format error
66 cannot open input
67 addressee unknown
68 host name unknown
69 service unavailable
70 internal software error_ ___

_ ___

Administration 4-69

A
dm

in
is

tr
at

io
n

CommKit Host Interface Exit Codes

71 system error (e.g., can’t fork)
72 critical OS file missing
73 can’t create (user) output file
74 input/output error
75 temp failure; user is invited to retry
76 remote error in protocol
77 permission denied
78 all channels busy
79 remote node not answering
80 server not answering
81 all trunk channels busy_ ___

_ ___

4-70 Administration

5 Compatibility

Introduction 5-1

Environment Variables Compatibility 5-1
DKINTF 5-2
DKGROUP 5-3

User-Level Compatibility 5-3
dk 5-4
dkcat 5-5
dkcu 5-5
dkdo 5-5
push and pull 5-5

Programmer-Level Compatibility 5-7
STREAMS 5-7
TTY Interface 5-7
Message Boundaries 5-8
Header Files 5-8
Library Interface Compatibility 5-9

Obsolete Library Routines 5-9
Supported Library Routines 5-10

System Call Compatibility 5-15
open(2) 5-15
read(2) 5-16
write(2) 5-16
poll(2) 5-17
close(2) 5-17

Table of Contents i

Table of Contents

ioctl(2) 5-18
Examples 5-20

dk_info Example 5-21
dkitdial Example 5-22
dk_namer Example 5-24
dk_tnamer Example 5-24
dk_xnamer Example 5-25
dkgos Example 5-26
dkleveld Example 5-27
dksplice Example 5-28
isdkclosed, isdkeof, and isdkleveld Example 5-29
poll Example 5-32

ii Table of Contents

C
om

patibility
Introduction

This chapter is included as a reference for programmers who may be porting
applications from a UNIX System V Release 3 environment; it also contains use-
ful information and examples for programmers who are developing new applica-
tions using the CommKit Host Interface.

This chapter discusses the compatibility issues associated with the current
CommKit Host Interface software release operating with UNIX System V Release
4. The compatibility issues are divided into three sections; environment vari-
ables, user-level, and programmer-level. The environment variables section
describes the shell variables supported by the host interface and their effect on
user commands and programmer interfaces. The user-level section addresses the
relationship of the user-level commands to the STREAMS architecture of the
underlying software. The programmer-level section addresses the new library
and system call interfaces as well as how to port existing application programs to
the new architecture. This new interface has been designed to hide implementa-
tion details and to minimize future porting efforts.

The overall function of the CommKit Host Interface software for UNIX SVR4 is
identical to that of CommKit Host Interface software releases for UNIX SVR3.
Applications that use the user-level commands may have to account for the new
UNIX system features but may continue to interface with host commands as they
have in previous releases. Applications that use the library and system call inter-
faces will need to be reprogrammed. The reprogramming effort will, however,
yield cleaner and more maintainable code.

Note: RFS is not supported by the NCR UNIX System.

Environment Variables Compatibility

All previous CommKit Host Interface software releases have supported the
environment variables DKINTF and DKKEY. The variable, DKGROUP is intro-
duced in the current release. Table 5-1 summarizes the status of these variables
for the current release.

Compatibility 5-1

C
om

pa
tib

ili
ty

Environment Variables Compatibility

Table 5-1: Status of Environment Variables
_ _______________________________
Variable Status_ _______________________________
DKKEY unchanged
DKINTF definition changed
DKGROUP new_ _______________________________

_ _______________________________

Note: If your previous CommKit Host Interface release supported the
environment variable DKNUMINTF, this function is included in
DKINTF. To support the old function of DKINTF and DKNUMINTF
with two interfaces, DKINTF can have the values of 0,1 or 1,0. (See the
section DKINTF below.)

DKINTF

DKINTF controls the interface used to place outbound calls by means of dkdial.
Previously, if DKINTF was not set, the outbound call would be placed on inter-
face 0.

All SVR4 releases perform round-robin dialing over all active interfaces. This
feature applies to all dial attempts in the system and is not per user.

Note: For applications requiring pre-SVR4 behavior, set DKINTF to 0 and
export it.

This CommKit Host Interface release supports a new syntax for DKINTF (a
comma-separated list of interfaces) as shown below:

DKINTF=0,0,1

The dial-out attempts are made in the order defined in the list until a call is com-
pleted or until the end of the list is reached. This allows lists in which one inter-
face is preferred over others. For example, the list shown in the screen fragment
above will dial over interface 0 twice before dialing over interface 1.

5-2 Compatibility

C
om

patibility
Environment Variables Compatibility

DKGROUP

DKGROUP controls the channel groups used to make a connection to a remote
endpoint. The use of channel groups allows administrators to configure multiple
groups for a single CPM-HS module which allows greater flexibility in originat-
ing group screening on remote systems. Channel groups do not require different
groups on the AT&T data switch. When used this way, channel groups can con-
trol how many connections can be made using the group. The definition of chan-
nel groups does not restrict access to the channel group based on UNIX filesys-
tem permissions, however, the administrator can adjust the dkitrc script to
specify permissions.

The administrator defines channel groups in the control file dkgroups which
defines the name, interface(s), and channel range for the group. Users can then
make connections using a channel group definition by setting and exporting the
DKGROUP variable to an entry in the dkgroups file.

Refer to the dkgroups(4) manual page for more details.

The system administrator can set the DKGROUP variable during login process-
ing in /etc/profile on a per-user basis. By making DKGROUP read-only, it will res-
trict what channels and interfaces are available to a user.

User-Level Compatibility

The CommKit Host Interface user-level commands contain the same functions as
previous releases. The major compatibility issues are the expanded features of
the UNIX System V Release 4 and their backward compatibility to UNIX System
V Release 3.2. Other compatibility issues are related to the new STREAMS archi-
tecture of the current CommKit Host Interface software release. The features
that affect the CommKit Host Interface commands are:

Compatibility 5-3

C
om

pa
tib

ili
ty

User-Level Compatibility

• Symbolic links • Long file names
• Job control • STREAMS

The following sections describe the relationship of these features to the com-
mands.

dk

The dk command implements remote execution and remote login between the
local and the remote host. The operation of the dk command can be affected if
the local and remote host are running different releases of the UNIX system,
because the dk command is designed to support only processes that conform to
the base UNIX System V definition. Processes that do not conform to this defini-
tion, even though they are supported by UNIX System V Release 4, may behave
poorly under a remote execution or remote login session.

The dk command is affected by different releases of the UNIX system as shown
below:

The remote execution and remote login commands do not use a STREAMS
interface on the remote host. Commands that depend on a STREAMS
interface may not work.

Commands given as the arguments with the dk command cannot be con-
trolled by the UNIX System V Release 4 job control mechanism. See sh(1)
in the UNIX System V Release 4 User’s Reference Manual for more informa-
tion on job control. The dk command running on a local host with UNIX
System V Release 4 may be controlled by the job control mechanism allow-
ing the user to execute multiple dk commands. Each execution of the dk
command uses one data switch connection.

When the dk command is run by a shell that supports job control [e.g., ksh(1) or
jsh(1)], the default behavior is to support job control. When dk is run in the back-
ground, all stty’s that can set the controlling terminal and all data written to the
terminal will be blocked until the dk command is moved to the foreground. This
is generally desired in background programs because this behavior does not
cause controlling terminal problems. In cases where this blocking is not desired,
use the -j option to prevent blocking on stty’s and write’s. Using the -j option is
the same as using /bin/sh and running dk in the background.

5-4 Compatibility

C
om

patibility
User-Level Compatibility

dkcat

The dkcat command is fully compatible with earlier releases of CommKit Host
Interface and the UNIX system. Current applications that use dkcat need not
change their interface with the dkcat command.

dkcu

The dkcu command is fully compatible with earlier releases of the CommKit
Host Interface and the UNIX system. Current applications that use dkcu need
not change their interface with the dkcu command.

Note: Long file names are not given special treatment when using the %put
and %take features of the dkcu command. If a source file has a name
longer than 14 characters and the target system is running UNIX System
V Release 3.2, the file name will be truncated.

As an added security feature, a restricted option (-r) is available to disable the ˜
escape sequences (with the exception of ˜. and ˜break) for dkcu. This option is
useful in controlling user access to systems by restricting the escape sequence to
disconnect or break only.

dkdo

The dkdo command is fully compatible with earlier releases of the CommKit
Host Interface and the UNIX system. Current applications that use dkdo need
not change their interface with the dkdo command.

push and pull

The push and pull commands are fully compatible with earlier releases of the
CommKit Host Interface and the UNIX system but they have been enhanced to
support the transfer of symbolic links and long file names. Current applications
that use push and pull need not change their interface with these commands.

Compatibility 5-5

C
om

pa
tib

ili
ty

User-Level Compatibility

push and pull preserve the name, type, and contents of the files they move with
the following exceptions:

Long
Names

If both the source and destination systems are running UNIX System
V Release 4 and the destination file system is of type S5, and the
source system sends a file name greater than 14 characters, then the
destination system will truncate the file name to 14 characters and
send a warning message notifying the user that the file name has
been truncated.

If the source system is running UNIX System V Release 4 and the
destination system is running UNIX System V Release 3.2, and the
source system sends a file name greater than 14 characters, then the
file name will be truncated to 14 characters and the source system
will send a warning message notifying the user that the file name has
been truncated.

Symbolic
Links

Symbolic links will be preserved when the destination supports
them. If the destination machine does not support symbolic links,
then the source machine will take the following actions:

If the symbolic link points to an ordinary file, the transferred file will be an
ordinary file with the name of the symbolic link but with the contents of
the ordinary file.

If the symbolic link points to a directory, the transferred file will be a
directory and the source system will treat it as a directory and transfer all
of the files it finds in that directory on the source system.

Because symbolic links that point to directories may be circular paths, the
source system limits the extent to which it will follow a directory path that
contains a symbolic link. In particular, if the path contains a symbolic link
and either the directory pointed to that link, or one of the sub-directories
has already been transferred, the source system will not transfer it again.
The source system will advise the user of the status of every symbolic link
that points to a directory.

5-6 Compatibility

C
om

patibility
Programmer-Level Compatibility

The architectural changes of this release will impact all applications that access
the CommKit Host Interface software through the library and system call inter-
face.

In particular, there is no ioctl interface supported in the current CommKit Host
Interface software release. All ioctl calls are reserved for use by the interface
library and their calling sequences are not guaranteed.

Porting old applications to the new release will, however, yield simpler, more
robust code. The sections that follow discuss the changes and show examples of
the new library routines and system calls. Many of the examples are taken from
the CommKit Host Interface user-level commands.

STREAMS

Application writers should be familiar with the characteristics of STREAMS I/O
and the UNIX System V Release 4 STREAMS Programmer’s Guide. In general,
applications that use the standard I/O library function calls (except to account
for STREAMS errors) do not need to be changed.

One aspect of STREAMS that application writers should be aware of is the hand-
off nature and internal buffering of writing data. A write system call to a Stream
will return immediately from the Stream head and the data will be queued to the
downstream modules and drivers. If the network is very busy or the driver can-
not transmit the data, the Stream will eventually flow control, but only after mul-
tiple write system calls complete. Refer to the section write(2) later in this
chapter for more information.

TTY Interface

The current CommKit Host Interface software release, unlike previous releases
does not reimplement the UNIX system tty interface. Instead, it uses the standard
TTY STREAMS modules, ldterm and ttcompat.

Note: The tty devices in the /dev/dkt directory are used for accounting purposes
only and only provide a tty interface for incoming calls accepted by the
dkserver process.

Compatibility 5-7

C
om

pa
tib

ili
ty

Programmer-Level Compatibility

Message Boundaries

The current CommKit Host Interface software release preserves message boun-
daries as they are received from the network. This means that all incoming URP
GOS1 and GOS2 data is available immediately and all URP GOS5 (that is, block
mode) data is available after the appropriate verification and processing. The
block mode message boundaries are preserved with the following exceptions:

Messages are split at every level-D URP code. (Refer to read(2) in the Sys-
tem Call Compatibility section later in this chapter.)

Messages may not be larger than the dkhs tunable configuration parame-
ter dkhs_rcv_max_msg_sz (default 10240). Messages received that are larger
than this parameter are split into two or more smaller messages at boun-
daries convenient to the dkhs driver.

The kernel splits transmitted messages so that their length does not exceed
STRMSGSZ bytes. For example, a 6144-byte write will be split into two
messages – 4096 bytes and 2048 bytes – when STRMSGSZ is 4096 bytes.
This parameter is found in the /etc/master.d/kernel file. Set STRMSGSZ to
the same value as dkhs_rcv_max_msg_sz to make the maximum transmitted
and received message sizes more even.

Applications that rely on preserving specific message boundaries (e.g.,
dkload) may suffer adverse affects from setting the value of STRMSGSZ
less than dkhs_rcv_max_msg_sz.

Header Files

This section describes the header files that may be needed when writing applica-
tion level programs to operate with the CommKit Host Interface. The support
for the contents of these files is limited to the #define entries and the structures
and global variables listed on the library manual pages. The following is a
description of the header files you may need:

dk.h This header file contains the error codes, external declarations, and
default file names used by the current CommKit Host Interface
software release. All applications that use the CommKit Host Inter-
face to place calls should include this header file.

5-8 Compatibility

C
om

patibility
Programmer-Level Compatibility

dk_urp.h This header file contains the URP level-D codes used by the dkleveld
library function.

rdfp.h This header file contains the dk_lvld_t definition used by the
dkleveld library function.

sysexits.h This header file contains exit codes used by the current CommKit
Host Interface software release user-level commands.

Library Interface Compatibility

Most of the old library routines have been replaced or dropped from the current
CommKit Host Interface software release. The new library routines support the
old actions and additional ones so that programmers will not have to wrestle
with the use of the ioctl interface to the CommKit Host Interface drivers.

Obsolete Library Routines

The following routines are not supported for the current CommKit Host Inter-
face software release:

dkminor This function converted a file descriptor into a data switch chan-
nel number. This function has been replaced by the dk_info
function that returns both the interface and channel number.
Refer to the dk_info example later in this chapter.

Note: This function was often used with the dtnamer function when switching
an outgoing call from the raw interface to the tty interface. Converting
the SVR3 old code to use the SVR4 equivalents will not make an outgo-
ing call over the tty interface. A process obtains a tty interface directly
by using the new dkitdial library function. Refer to the dkitdial example
later in this chapter.

dknamer This function converted a CommKit Host Interface minor
number into the /dev name for the raw interface. It has been
replaced by the dk_namer library function that accepts both the
CommKit Host Interface number and the data switch channel
number as arguments. Refer to the dk_namer example later in
this chapter.

Compatibility 5-9

C
om

pa
tib

ili
ty

Programmer-Level Compatibility

dtnamer This function converted a CommKit Host Interface minor
number into the /dev name for the tty interface. This function
has been replaced by the dk_tnamer library function that accepts
both the CommKit Host Interface number and the data switch
channel number as arguments. Refer to the dk_tnamer example
later in this chapter.

Note: This function was often used with the dkminor function when switching
an outgoing call from the raw interface to the tty interface. Converting
the SVR3 old code to use the SVR4 equivalents will not make an outgo-
ing call over the tty interface. A process obtains a tty interface directly
by using the new dkitdial library function. Refer to the dkitdial example
later in this chapter.

dxnamer This function converted a CommKit Host Interface minor
number into the /dev name for the remote execution interface.
This function has been replaced by the dk_xnamer library func-
tion that accepts both the CommKit Host Interface number and
the data switch channel number as arguments. Refer to the
dk_xnamer example later in this chapter.

dkxwrite This function transmitted data to the remote system and was
used by the remote execution interface. This function is no
longer supported for user-level application programs.

Supported Library Routines

This section describes the library routines that are supported by the current
CommKit Host Interface software release. These are the only supported inter-
faces available to application developers. All of the ioctl calls supported in previ-
ous releases are no longer supported.

These library functions should satisfy all of the CommKit Host Interface require-
ments of user-developed application code. Many of the new functions have been
designed to isolate application code from the underlying driver and make it
more portable to future releases of the CommKit Host Interface software. The
library is delivered as a dynamically linked shared object library so that applica-
tion processes will not have to re-compile or re-link when a new version of the
CommKit Host Interface software is installed.

5-10 Compatibility

C
om

patibility
Programmer-Level Compatibility

Because the CommKit Host Interface library is now a dynamically linked shared
library, its name has been changed from /usr/lib/libdk.a to /usr/lib/libdk.so. The
method of access, however, remains the same (that is, including -ldk on the com-
pilation command line.) Table 5-2 describes the new library routines. In addi-
tion to providing a dynamically linked shared library, a static version
(/opt/dk/lib/libdk.a) of the CommKit Host Interface library is available. This library
can only be accessed by specifying the full path name of the library on the link
edit command line. The static library libdk.a can be used to create static images of
CommKit Host Interface applications, however, this static binding requires user
applications to be link edited again whenever a new release or patch of the
CommKit Host Interface library is installed. CommKit Host Interface library
updates require a new application release to distribute the update, whereas the
recommended dynamic binding shared library (libdk.so) does not require a new
application release and does not need to be link edited again. For these reasons,
the use of libdk.so (shared) is recommended over libdk.a (static).

Table 5-2: Supported Library Routines
_ ___

Man Page Function Description_ ___
dk_flush(3X) dk_flush() Modifies the handling of user data queued for transmission

when the CommKit Host Interface connection is closed. The
user can now wait for the default time interval, specify a
time interval, or wait until all data has been received by the
URP receiver at the remote end of the CommKit Host Inter-
face connection._ ___

dk_info(3X) dk_info() Retrieves or sets information about an open CommKit Host
Interface connection. At present the information returned is
limited to the CommKit Host Interface number, the data
switch channel number, the URP window size, and the
number of URP blocks outstanding. The information that
may be set is limited to the URP window size and the
number of outstanding URP blocks._ ___

dk_namer(3X) dk_namer() Converts a CommKit Host Interface number and a data
switch channel number into the device name under /dev/dk
for the raw interface._ ___

dk_namer(3X) dk_tnamer() Converts a CommKit Host Interface number and a data
switch channel number into the device name under /dev/dkt
for the tty interface.

_ ___

Table 5-2: continued on next page

Compatibility 5-11

C
om

pa
tib

ili
ty

Programmer-Level Compatibility

Table 5-2: Continued
_ ___

Man Page Function Description_ ___ _ ___
dk_namer(3X) dk_xnamer() Converts a CommKit Host Interface number and a data

switch channel number into the device name under /dev/dkx
for the remote execution interface._ ___

dk_uxinfo(3X) dk_uxinfo() Retrieves or sets information about URP parameters of
receive buffer size and number of outstanding urp blocks.
This can only be used when the DKUX module is pushed on
the STREAM._ ___

dkdial(3X) dkitdial() May be used to place all outgoing calls. Its options include
the selection of CommKit Host Interface, raw or tty device,
and baud rate._ ___

dkdial(3X) dkdial() Provides the traditional dkdial function._ ___
dkdial(3X) dkndial() Provides the traditional dkndial function._ ___
dkdial(3X) dktdial() Provides the traditional dial function on a tty device by cal-

ling dkitdial._ ___
dkdial(3X) dkntdial() Provides the traditional dial function on a tty device for the

given interface by calling dkitdial._ ___
dkdial(3X) dkgdial() Provides outgoing calls on a tty device using a specified

group._ ___
dkdial(3X) dkgtdial() Provides outgoing calls on a tty device for the specified

group._ ___
dkepoint(3X) dkgetepoint() Retrieves the endpoint type code from the circuit associated

with fd and stores the single character at ep_type. It is
unchanged from previous releases._ ___

dkepoint(3X) dksetepoint() Sets the endpoint type code for the circuit associated with fd
to the single character stored at ep_type. It is unchanged
from previous releases._ ___

dkerr(3X) dkerr() Converts data switch error codes into the appropriate error
messages for logging or printing. This function includes the
new error codes of the newest releases of the AT&T data
switches._ ___

dkgos(3X) dkget_goslevel() Retrieves the channel transmitter GOS level. Only GOS3,
GOS4, and the default value of GOS5 are supported. See the
dkgos example later in this chapter.

_ ___

Table 5-2: continued on next page

5-12 Compatibility

C
om

patibility
Programmer-Level Compatibility

Table 5-2: Continued
_ ___

Man Page Function Description_ ___ _ ___
dkgos(3X) dkset_goslevel() Sets the channel transmitter to a different GOS level. Only

GOS3, GOS4, and the default value of GOS5 are supported.
See the dkgos example later in this chapter._ ___

dkleveld(3X) dkleveld() Transmits a string of one or more URP level-D control codes
or mixed data and control codes on an open CommKit Host
Interface device. See the dkleveld example later in this
chapter._ ___

dkleveld(3X) dkeof() Transmits an URP level-D EOF code on an open CommKit
Host Interface device. The EOF is scheduled for transmis-
sion in a separate URP block after any data already queued
for the circuit._ ___

dkleveld(3X) dkbreak() Transmits an URP level-D BREAK code on an open
CommKit Host Interface device. The BREAK is scheduled
for transmission in a separate URP block after any data
already queued for the circuit._ ___

dkleveld(3X) dkusb() Send a two-byte URP unsequenced data block on an open
CommKit Host Interface device. The unsequenced data
block is scheduled for the next transmission opportunity._ ___

dkleveld(3X) isdkleveld() Tests whether the top message at the Stream head contains
an URP level-D control code message. See the isdkleveld
example later in this chapter._ ___

dkleveld(3X) isdkeof() Tests whether the top message at the Stream head contains
an URP level-D control code message with an EOF code as
the first entry. See the isdkeof example later in this chapter._ ___

dkleveld(3X) isdkclosed() Tests whether the circuit associated with the CommKit Host
Interface device has been disconnected by the other end of
the circuit. See the isdkclosed example later in this chapter._ ___

dkmgr(3X) dkmgr() Establish the address as a SERVER on the AT&T Data
Switch, using any interface or channel._ ___

dkmgr(3X) dknmgr() Establish the address as a SERVER on the AT&T Data
Switch, using any channel on the specified interface._ ___

dkmgr(3X) dknnmgr() Establish the address as a SERVER on the AT&T Data
Switch, using the specified channel on the specified interface._ ___

dkmgr(3X) dkmgrack() Accept the incoming call to the SERVER._ ___

Table 5-2: continued on next page

Compatibility 5-13

C
om

pa
tib

ili
ty

Programmer-Level Compatibility

Table 5-2: Continued
_ ___

Man Page Function Description_ ___ _ ___
dkmgr(3X) dkmgrnak() Reject the incoming call to the SERVER._ ___
dkmgr(3X) dkinit() Specify the URP initialization mode for the incoming call to

the SERVER._ ___
dkmgr(3X) dkcktcfg() Specify the URP window size for the incoming call to the

SERVER._ ___
dkmgr(3X) dk_chk_idle() Verify the specified interface and channel is IDLE and not in

use on the system._ ___
dkmgr(3X) dk_reset_ckt() Reset the specified interface and channel to the IDLE state._ ___
dksplice(3X) dksplice() Splices together two existing circuits using the supplied file

descriptors.

Note: If the function call fails and the standard input was
passed as one of the arguments to the function, the
standard input must be re-initialized. See the
dksplice example later in this chapter.

_ ___
dksplwait(3X) dksplwait() Waits for an existing circuit to be spliced. Provides a timeout

value so that a process may choose not to wait forever._ ___
dktsplice(3X) dktr_splice() Requests a transparent splice of an incoming call to the speci-

fied address._ ___
dktsplice(3X) dktr_osplice() Requests a transparent splice of an incoming call to the speci-

fied address within the specified channel range._ ___
dktsplice(3X) dktr_call() Makes a call for transparent splice purposes setting the baud

rate and URP parameters correctly for the spliced endpoints._ ___
dkurpctl(3X) dkset_no_ainit() Sets the URP parameters to withhold acknowledgements of

URP initialization requests._ ___
dkurpctl(3X) dkset_one_ainit() Sets the URP parameters to respond to only one URP initiali-

zation request._ ___
dkxenviron(3X) dkxenviron() Transmits local environment parameters to the remote sys-

tem. This function is used by the remote execution interface._ ___
maphost(3X) maphost() Maps partial dialstring information into a complete dial-

string by searching the dkhosts table. It is unchanged from
previous releases.

_ ___

Table 5-2: continued on next page

5-14 Compatibility

C
om

patibility
Programmer-Level Compatibility

Table 5-2: Continued
_ ___

Man Page Function Description_ ___ _ ___
maphost(3X) miscfield() Provides miscellaneous information from the dkhosts table.

It is unchanged from previous releases._ ___

System Call Compatibility

The current CommKit Host Interface software release supports the open, close,
read, poll, and write system calls. The programmer should take into account
that, with these two exceptions, the current CommKit Host Interface software
release interfaces are STREAMS interfaces. The tty ioctl directives are supported
by the standard UNIX system STREAMS module ldterm. Any low level support
required by the ldterm module is supplied by the current CommKit Host Inter-
face software release STREAMS module dkty. The ioctl interface supported in
previous releases of the CommKit Host Interface software is no longer supported
because the action:

Is no longer needed because of architectural and implementation changes

Is replaced by a library function or by an administrative command

Is reserved for the internal use of the CommKit Host Interface software
and is not supported for user-level applications code

Has been dropped from this release.

The rest of this section gives a brief outline of the open, close, read, write, and
poll system calls followed by a list of the old ioctl directives and their current
disposition.

open(2)

The open system call to STREAMS drivers remains similar to the open call made
to character drivers, with an expanded set of reasons – due to the exhaustion of
STREAMS resources – for which the open call may fail. Application writers may
wish to enhance their software to accommodate the new reason codes.

Compatibility 5-15

C
om

pa
tib

ili
ty

Programmer-Level Compatibility

read(2)

The behavior of the read system call with STREAMS drivers is significantly dif-
ferent from character drivers. Some key points to note are:

Read Options The STREAMS read system call has three user-
programmable modes:

• Byte-stream • Message non-discard • Message discard

Refer to the UNIX System V Release 4 STREAMS
Programmer’s Guide.

O_NODELAY When reading from a character driver, a device with no data
will return a value of 0. A Stream head will return a value of
-1 with errno set to EAGAIN.

LEVEL-D STREAMS read calls may return a -1 with errno set to
EBADMSG, because an URP level-D control code has
arrived. Level-D codes arrive as M_PROTO messages and an
application must use the appropriate CommKit Host Inter-
face software library function such as isdkleveld to read the
control code (refer to the isdkleveld example later in this
chapter).

FAIL The read may fail because an error message such as an
M_ERROR or an M_HANGUP reaches the Stream head.

write(2)

The write system call has changed. Some key points to note are:

BLOCKING A STREAMS device will only block on a write if it cannot
accept data because of flow control directives by a lower
level. Usually a write will return immediately. (See also
O_NODELAY.)

O_NODELAY The behavior of a write to a STREAMS device with the
O_NODELAY flag set is very different from a character
device. Usually having the flag set will not make a difference
since most writes to a STREAMS device return immediately.
If, however, the devices cannot accept data then having the
O_NODELAY flag set will cause the write to return a -1 with
errno set to EAGAIN. A write with O_NODELAY set may
also return less than the requested amount if the device can

5-16 Compatibility

C
om

patibility
Programmer-Level Compatibility

only accept part of the data.

LEVEL-D URP level-D codes cannot be written using the write system
call since they have to be M_PROTO messages. The current
CommKit Host Interface software release library routine
dkleveld should be used to send URP level-D codes. Refer to
the dkleveld example later in this chapter.

FAIL A write to a Stream head will fail, if it has received an
M_ERROR message.

poll(2)

The poll system call may now be used with CommKit Host Interface STREAMS
devices. It had been necessary for a user application to either wait for data to
arrive (synchronous poll) or rely on some implementation-specific trick such as a
signal to poll for data (asynchronous poll). CommKit Host Interface Release 3.2,
for example, provides the DIOCSIG ioctl to signal a process when data has
arrived. In STREAMS, the I_SETSIG STREAMS ioctl can be used with the poll
system call to eliminate implementation-dependent tricks [see streamio(7) in the
UNIX System V Release 4 STREAMS Programmer’s Guide.]. Refer to the poll exam-
ple later in this chapter.

close(2)

The close system call has changed the least but may cause certain applications
difficulty if the timing required to close and proceed to the next activity is criti-
cal. The close system call in STREAMS waits up to 15 seconds, for each module
and driver, to drain before the stream is dismantled and the system call returns.
Applications which require special timing considerations should use
O_NODELAY on the open system call. This will cause the close system call to
return immediately, but may also cause other side effects with the read and write
system calls.

dk_flush changes the close processing for flushing queued transmit user data on
a data switch connection. flush_time may be specified to control how long close
will wait for data to drain to the data switch’s remote endpoint as one of the fol-
lowing:

Compatibility 5-17

C
om

pa
tib

ili
ty

Programmer-Level Compatibility

-1 wait for all of the queued user data to drain.

0 compute a time delay based on the queued user data to drain; this
assumes data drains at a rate of 10 bytes per second, equivalent to a 110
baud printer.

> wait the specified seconds for the queued user data to drain.

The waiting for the data to drain occurs when the user closes the fd, by means
close or exit. When the queued data doesn’t drain or the remote endpoint
disconnects the circuit, close fails and returns an error to allow the user to deter-
mine the failure condition. This error return only occurs when dk_flush is
called. Refer to the dk_flush(3X) manual page for return values.

ioctl(2)

The list of previously supported ioctl calls is given in Table 5-3 with a statement
on the status of each.

Table 5-3: Previously Supported ioctl System Calls and Current Status
_ __

System Call Status_ __
DKIODIAL All of the dial function is now provided by the expanded library function dkit-

dial. Refer to the dkitdial example later in this chapter._ __
DKIOCNEW The announcement of a server name is now provided by the library function

dkmgr._ __
DKIOCREQ This function is not supported in user application code. All outgoing calls should

use the dkitdial library routine. Refer to the dkitdial example later in this chapter._ __
DIOCRMODE This Set Receiver Mode ioctl was used to select Block Mode or Character Mode and

allowed the application to specify the timeout period for Character Mode within a
25 millisecond granularity. This ioctl is not supported by current CommKit Host
Interface software release and the Raw Driver Facility receiver mode for a circuit is
selected solely on the basis of the INIT0 or INIT1 control code received during
circuit initialization.

All incoming URP GOS1 and GOS2 data is available immediately and all URP
GOS5 (block mode) data is available after the appropriate verification and pro-
cessing. The timeout function may be re-implemented using a combination of the
poll system call and the O_NODELAY open flag._ __

DIOCQQABO The DIOCQQABO ioctl allowed the application to determine the completion
status for the most recently completed read and was used in earlier implementa-_ __

Table 5-3: continued on next page

5-18 Compatibility

C
om

patibility
Programmer-Level Compatibility

Table 5-3: Continued
_ __

System Call Status_ __
tions to determine why a read returned less than the requested bytes.

Since the STREAMS environment disassociates the application’s read from the
receive performed on the network, it is no longer necessary to support this func-
tion. Application code should use the dkleveld functions to look for level-D or
EOF indications. Refer to the isdkclosed, isdkeof, isdkleveld example later in the
chapter. The current CommKit Host Interface software preserves message boun-
daries for received data, except:
1. It splits messages larger than 10240 bytes into smaller messages at

boundaries convenient for the dkhs driver
2. It splits messages at every level-D URP code._ __

DIOCXCTL In previous releases the only way an application could transmit an arbitrary URP
level-D code was to use the DIOCXCTL ioctl directive. The specified level-D code
would be transmitted at the end of the next data block followed by a possibly
zero-length write to force the level-D code to be transmitted in an URP data
block. This function has been replaced by the dkleveld library function. Refer to
the dkleveld example later in this chapter._ __

DIOCSIG An application could perform a form of asynchronous read with this ioctl request
by "Posting a Receiver" on a circuit and being notified later with signal when the
data arrived.

This function is now provided through the STREAMS poll system call providing
a cleaner more portable approach. Refer to the poll example later in the chapter._ __

DIOCBSIZE This directive allowed the application to alter the URP transmit block size from
the default value.

This function is provided through the new library function dk_info which also
allows the application to change the number of outstanding URP blocks. Refer to
the dk_info example later in this chapter._ __

TCSBRK The transmission of an URP level-D BREAK code was supported by the host
driver through this ioctl in previous CommKit Host Interface implementations.

This function is now provided through the dkbreak library function. The TTY
subsystem continues to support the TCSBRK ioctl._ __

DIOOPEN Certain DT/HYBRID features in the dkserver program used this ioctl to deter-
mine whether a specific channel on the interface was open. This function is not
supported for user-level applications code._ __

DIOCINFO Information about the calling channel and responsible interface could be obtained
with this ioctl in previous releases of the CommKit Host Interface software. This_ __

Table 5-3: continued on next page

Compatibility 5-19

C
om

pa
tib

ili
ty

Programmer-Level Compatibility

Table 5-3: Continued
_ __

System Call Status_ __
function is no longer supported._ __

DIOSRV This ioctl was used to support the DT/HYBRID -C option for the dkserver pro-
gram by checking whether the argument channel had any flags set in the channel
control structure. This function is not supported for user-level applications code._ __

DIOCFLUSH This directive would flush output queued for transmission on a circuit. This
function is no longer necessary since the CommKit Host Interface software pro-
vides a 15-second drain period for all locally requested circuit terminations._ __

DKIOCSPN This directive would splice together two circuits specified by Channel Number.
This function is no longer supported. A similar function is provided by the
dksplice library function._ __

DKIOCSPL This directive would splice together two circuits specified by File Descriptor.
This function is now provided by the dksplice library function._ __

DIOCSWAIT This directive allowed an application to wait for its circuit to be spliced. This
function is now provided by the dksplwait library function._ __

DKIORESET This directive would allow a program to reset the entire interface. This function
is provided by the dkmaint command._ __

DIOURPWD This directive would allow a process to set both the URP transmit window and
initialization mode for a circuit.

A process may set the transmit window size by using the CommKit Host Inter-
face library function dk_info. Processes no longer need to set the URP initializa-
tion mode._ __

DIOGETWD This directive returned a copy of the host Receive Buffer Size. This function is no
longer supported for user-level applications code._ __

DIOCQSTAT This directive returned various interface error statistics. This function is sup-
ported by the dkstat command._ __

Examples

The code fragments shown in Figures 5-1 through 5-9 are examples of the new
library functions. Some of the code is taken out of context from user-level com-
mands. The intent of this section is to provide porting examples and is not to
present a tutorial in application programming. Refer to the manual pages for
more information.

5-20 Compatibility

C
om

patibility
Programmer-Level Compatibility

dk_info Example

The example in Figure 5-1 is a self-contained program that shows the three com-
mands of the dk_info library function.

Note: Retrieval and setting of the URP window parameters are not supported
on the remote execution interface.

The following is a description of the dk_info library example, Figure 5-1:

Lines 4 and 5 define storage for the two information structures needed.

Lines 13 through 19 show the use of the DKGETIC command that returns
the interface and channel number of the file descriptor for the standard
input.

Lines 21 through 28 show the use of the DKGETUW command that
returns the parameters of the URP window.

Lines 30 through 40 show the use of the DKSETUW command that sets the
parameters of the URP window. It is important to set the maxblocks and
maxbytes values before using this command.

If an error is returned by any of these calls there will also be an error message,
printed on standard error, from the library function.

Figure 5-1: dk _info Example

1 #include <stdio.h>
2 #include <dkit/dk.h>
3
4 dk_intfchan_t myic;
5 dk_urpwin_t myuw;
6
7 main() {
8
9 int fd;

10
11 fd = fileno(stdin);
12
13 if(dk_info(fd, DKGETIC, &myic) < 0) {

Figure 5-1: continued on next page

Compatibility 5-21

C
om

pa
tib

ili
ty

Programmer-Level Compatibility

Figure 5-1: Continued

14 fprintf(stderr, "dk_info DKGETIC failed \n");
15 }
16 else {
20
17 fprintf(stderr,
18 "intf=%d chan=%d \n", myic.iface, myic.chan);
19 }
21 if(dk_info(fd, DKGETUW, &myuw) < 0) {
22 fprintf(stderr, "dk_info DKGETUW failed \n");
23 }
24 else {
25 fprintf(stderr,
26 "maxblocks=%d maxbytes=%d \n",
27 myuw.maxblocks, myuw.maxbytes);
28 }
29
30 myuw.maxblocks = 7;
31 myuw.maxbytes = 60;
32
33 if(dk_info(fd, DKSETUW, &myuw) < 0) {
34 fprintf(stderr, "dk_info DKSETUW failed \n");
35 }
36 else {
37 fprintf(stderr,
38 "maxblocks=%d maxbytes=%d \n",
39 myuw.maxblocks, myuw.maxbytes);
40 }
41 return 0;
42 }

dkitdial Example

The code fragment in Figure 5-2 shows two examples of the dkitdial function.
The following is a description of the code in Figure 5-2 that shows how the dkit-
dial function is used to select the interface of the outgoing call:

Line 4 defines a dialstring and line 5 defines the needed structure.

5-22 Compatibility

C
om

patibility
Programmer-Level Compatibility

Lines 7– 9 initialize the structure with the dialstring and interface number.

Line 10 sets the command value to indicate that this is an ordinary dial
(DK_DIAL) using the interface information (DK_SELINTF) set on line 8.

Line 11 is the actual call to the function.

The following is a description of the code in Figure 5-2 that shows how the dkit-
dial function is used to select tty processing:

Lines 13 to 15 initialize the structure but, because line 16 does not use the
DK_SELINTF command, the functioning interface ignores the information
and uses the default interface selection instead.

Line 16 does use the DK_PUSHTTY command and this will request the
function to push the tty processing modules onto the open stream.

Line 17 is the actual call to the function.

Figure 5-2: dkitdial Example

1 #include <dkit/dk.h>
2
3 int fdout0, fdout1, cmd;
4 char dstring[128] = "ny/town/lake1";
5 struct dkit_dial dl;
6
7 dl.dest = dstring;
8 dl.intf = 1;
9 dl.baud = (char *)NULL;

10 cmd = DK_DIAL|DK_SELINTF;
11 fdout1 = dkitdial(cmd, &dl);
12 /* make a call so tty processing is done./
13 dl.dest = dstring;
14 dl.intf = 0;
15 dl.baud = (char *)NULL;
16 cmd = DK_DIAL|DK_PUSHTTY;
17 fdout0 = dkitdial(cmd, &dl);

Compatibility 5-23

C
om

pa
tib

ili
ty

Programmer-Level Compatibility

dk_namer Example

Figure 5-3 is an example of the dk_namer function. This function returns a
pointer to a character string that is the name of the raw device indicated by the
two arguments. The first argument (intf) is the interface number and the second
argument (chan) is the data switch channel number on that interface.

Figure 5-3: dk _namer Example

1 char * dev_name;
2 int intf;
3 int chan;
4
5 /* get the device name for interface 0 and channel 112 */
6 intf = 0;
7 chan = 112;
8
9 dev_name = dk_namer(intf, chan);

dk_tnamer Example

Figure 5-4 is an example of the dk_tnamer function. This function returns a
pointer to a character string that is the name of the tty device indicated by the
two arguments. The first argument (intf) is the interface number and the second
argument (chan) is the data switch channel number on that interface.

5-24 Compatibility

C
om

patibility
Programmer-Level Compatibility

Figure 5-4: dk _tnamer Example

1 char * dev_tty_name;
2 int intf;
3 int chan;
4
5 /* get the tty device name for interface 0 and channel 112 */
6 intf = 0;
7 chan = 112;
8
9 dev_tty_name = dk_tnamer(intf, chan);

dk_xnamer Example

Figure 5-5 is an example of the dk_xnamer function. The function returns a
pointer to a character string that is the name of the xqt device indicated by the
two arguments. The first argument (intf) is the interface number and the second
argument (chan) is the data switch channel number on that interface.

Figure 5-5: dk _xnamer Example

1 char * dev_xqt_name;
2 int intf;
3 int chan;
4
5 /* get the xqt device name for interface 0 and channel 112 */
6 intf = 0;
7 chan = 112;
8
9 dev_xqt_name = dk_xnamer(intf, chan);

Compatibility 5-25

C
om

pa
tib

ili
ty

Programmer-Level Compatibility

dkgos Example

The example in Figure 5-6 is a self-contained program that shows the two com-
mands within the dkgos library function.

Figure 5-6: dkgos Example

1 #include <errno.h>
2 #include <dkit/dk.h>
3 #include <stdio.h>
4
5 main()
6 {
7 int fd, goslevel, gos = GOS3;
8
9 if ((fd = dkdial("nj/shore/vacation")) < 0) {
10 (void) fprintf(stderr, "Dkdial returned %d \n", fd);
11 exit(2);
12 }
13
14 if (! dkget_goslevel(fd, &goslevel)) {
15 (void) fprintf(stderr,
16 "Can’t get gos level for fd %d \n", fd);
17 exit(EIO);
18 }
19
20 if (goslevel != gos) {
21 /* must set GOS transmitter to requested level */
22 if (! dkset_goslevel(fd, &gos)) {
23 (void) fprintf(stderr,
24 "Can’t set fd %d gos level to GOS %d! \n",
25 fd, gos);
26 exit(EIO);
27 }
28 }
29
30 close(fd);
31 }

Warning: Modifying the GOS levels should only be done by those who know and
anticipate the effect on the application and network traffic.

The following is a description of the dkgos library example, Figure 5-6:

5-26 Compatibility

C
om

patibility
Programmer-Level Compatibility

Lines 1 through 3 show the necessary include files.

Line 7 defines the variables and sets the requested GOS level to GOS3.

Line 9 uses the dkdial function to dial the host.

Line 14 uses the dkget_goslevel() function to extract the current transmit
GOS level and, upon success, stores the value in the goslevel variable.
Failure of dkget_goslevel() causes Lines 15 through 17 to execute and the
code exits.

Line 20 checks whether the current GOS level matches the requested level.
If not, line 22 uses the dkset_goslevel() function to set the GOS level to the
requested level. If not successful, lines 23-26 report the error and exit.

dkleveld Example

Figure 5-7 demonstrates the use of the dkleveld function to send both data and
level-D control codes. The program assumes that stdout is a data switch connec-
tion. Lines 6 through 12 define and initialize a dk_lvld_t message structure. The
message contains a BREAK, three characters and another BREAK. The dkleveld
function is called on line 21 and passed the file descriptor, the address of the
message buffer and its length.

Compatibility 5-27

C
om

pa
tib

ili
ty

Programmer-Level Compatibility

Figure 5-7: dkleveld Example

1 #include <stdio.h>
2 #include <sys/types.h>
3 #include <dkit/rdfp.h>
4 #include <dkit/dk_urp.h>
5
6 dk_lvld_t msg[] = {
7 dkDmkctl(URPdBREAK),
8 dkDmkdata(’a’),
9 dkDmkdata(’b’),

10 dkDmkdata(’c’),
11 dkDmkctl(URPdBREAK)
12 };
13
14 main()
15 {
16 int fd, ret;
17
18 fd = fileno(stdout);
19 printf("start the test \n");
20 sleep(3);
21 ret=dkleveld(fd,msg,sizeof(msg));
22 printf("return code %d \n",ret);
23 }

dksplice Example

Figure 5-8 is an example of a simple splice recovery program and assumes that
the original connection to the host was an ordinary tty login session.

The following is a description of the dksplice library example in Figure 5-8:

Lines 1 through 3 show the necessary include files.

Line 10 uses the dkdial function to dial the host to be spliced.

Line 15 saves the tty settings of the standard input (file descriptor 0).

Line 16 splices the call. If the splice works and the user is now connected
to the new machine, the execution drops down to line 26, closes the open
file descriptor, and exits. If the splice fails, the execution enters the
recovery code at line 19.

5-28 Compatibility

C
om

patibility
Programmer-Level Compatibility

Lines 20 through 22 push the tty modules back onto the standard input
stream.

Line 23 resets the terminal modes.

Figure 5-8: dksplice Example

1 #include <dkit/dk.h>
2 #include <sys/stropts.h>
3 #include <sys/termio.h>
4
5 main()
6 {
7 int rtn, fd;
8 struct termio myterm;
9

10 fd=dkdial("nj/shore/vacation");
11 if(fd<0){
12 printf("dkdial returned %d \n", fd);
13 exit(2);
14 }
15 ioctl(0, TCGETA, &myterm);
16 rtn=dksplice (fd,0);
17
18
19 if(rtn<0){
20 ioctl(0, I_PUSH, "dkty");
21 ioctl(0, I_PUSH, "ldterm");
22 ioctl(0, I_PUSH, "ttcompat");
23 ioctl(0, TCSETA, &myterm);
24 }
25
26 close(fd);
27 }
28

isdkclosed, isdkeof, and isdkleveld Example

Figure 5-9 shows the use of the three level-D query functions, isdkclosed,
isdkeof, and isdkleveld. These functions replace the old DIOCQQABO ioctl
directive which allowed the caller to find the status of the last read system call.

Compatibility 5-29

C
om

pa
tib

ili
ty

Programmer-Level Compatibility

The function vcs_read uses the read system call, line 22, to read data from an
open file descriptor ds of a data switch connection. The return value is checked
on line 24 and, if it is greater than zero, the code breaks from the loop and
returns the number of bytes read. Line 27 checks for returns less than zero.

Line 28 tests if errno is equal to EBADMSG. The EBADMSG indicates that the
message at the head of the queue is not a data message.

Line 29 uses the isdkeof function to check for a level-D EOF code. If the function
returns a true value then an EOF code has been received and the value of nread is
set to EOF and the code breaks from the loop. If this is not the case, line 33 uses
the isdkleveld function to check for any other level-D code. This function
returns the level-D code or a zero. If there was a level-D code the loop continues
and another read system call is executed.

Note: Since isdkleveld returns the level-D code, it could have been used to
check for EOF by testing the return value with URPdEOF from the
dk_urp.h header file.

For all other errors, the return code is set to the negative of the errno on line 37
and the code breaks the loop on line 38.

Line 40 checks for a zero return and calls isdkclosed. If the read returned zero
bytes and the circuit is not closed, then this is a real zero-length read and the
loop continues. If the circuit is closed the loop is broken on line 44 and a zero is
returned.

5-30 Compatibility

C
om

patibility
Programmer-Level Compatibility

Figure 5-9: isdkclosed, isdkeof, isdkleveld Example

1 /*
2 ** Read from VCS connection.
3 ** Return value
4 ** nread > 0, number of bytes read.
5 ** nread == 0, circuit has been closed.
6 ** nread == EOF, level-D EOF received.
7 ** nread < 0 (other than EOF), nread is -errno.
8 ** Note: Real zero length reads and level-D codes
9 ** other that EOF are not returned by this function.

10 */
11 #include <stdio.h>
12 #include <errno.h>
13
14 vcs_read(ds)
15 {
16 static char rbuf[BUFSIZ];
17 extern int errno;
18 int nread;
19
20 for (;;) {
21
22 nread = read(ds, rbuf, BUFSIZ);
23
24 if(nread > 0) {
25 break;
26 }
27 if(nread < 0) {
28 if(errno == EBADMSG) {
29 if (isdkeof(ds)) {
30 nread = EOF;
31 break;
32 }
33 if (isdkleveld(ds)) {
34 continue;
35 }
36 }
37 nread = -errno;
38 break;
39 }
40 if((nread == 0) && !(isdkclosed(ds))) {
41 continue;
42 }

Figure 5-9: continued on next page

Compatibility 5-31

C
om

pa
tib

ili
ty

Programmer-Level Compatibility

Figure 5-9: Continued

43 else {
44 break;
45 }
46 }
47 return nread;
48 }

poll Example

The code fragments in Figure 5-10 show how to poll a STREAMS file descriptor.
This code replaces the old DIOCSIG ioctl directive for data switch circuits. The
programmer should note that the STREAMS SIGPOLL signal is generated when
the requested event happens, if it is the event at the head of the queue. If there
are things already on the queue, you can use the poll system call with a zero
timeout to look at the queue, as in the example.

Figure 5-10 assumes an open file descriptor fd to a data switch circuit and shows
only the framework that would be placed around some local processing. Line 5
declares the signal catching function and lines 14 and 15 define a structure and a
pointer used by the poll system call. Line 18 requests that the SIGPOLL signal be
caught, line 27 is the ioctl call that requests that the Stream head send a SIGPOLL
when ordinary data arrives. Once this request for service has been made it will
be in effect until it is explicitly turned off.

Line 28 used the poll system call to look at one file descriptor. It is called with
three arguments. The first is the address of the pollfd structure initialized on
lines 20 and 21. The second is the number of pollfd structures found at this
address; in this example it is one. The last argument is the timeout value which is
set to zero so that the system call will not be blocked. Since we have only
requested that poll look at the events on one circuit it will return a one if data
has arrived on that circuit and a zero if there is no data available. If the poll is
true then there will be some local processing, lines 34 to 41. Remember that if the
poll is true there will not be any SIGPOLL signals unless the queue is emptied. If
the poll test on line 28 is false, the example drops down to line 44 where there is
more local processing. At the end of this local processing the example notifies the

5-32 Compatibility

C
om

patibility
Programmer-Level Compatibility

Stream head to turn off the SIGPOLL notification on line 92. The example con-
cludes with a simple signal catching function, starting at line 95. The program-
mer must remember to reset the SIGPOLL catching before reading all of the data
off of the queue, since the default action of SIGPOLL is to kill the process. Since
this fragment uses a very simple signal example and there are many new signal
options in UNIX System V Release 4, we suggest anyone porting an application
review all the new options.

Figure 5-10: poll Example

1 #include <signal.h>
2 #include <poll.h>
3 #include <sys/stropts.h>
4
5 static void catchpoll();
6
7 /*
8 ** Do some processing but look for data on file
9 ** descriptor ’fd’.

10 */
11 proc1(fd)
12 {
13
14 static struct pollfd dkxpoll;
15 static struct pollfd *fds = &dkxpoll;
16
17 /* arrange to catch SIGPOLL */
18 (void) signal(SIGPOLL, catchpoll);
19
20 fds->fd = fd;
21 fds->events = POLLIN;
22
23 /*
24 ** Watch for data on fd with the I_SETSIG ioctl.
25 */
26
27 ioctl(fd, I_SETSIG, S_RDNORM);
28 if (poll(fds, 1 , 0) == 1) {
29 /*
30 ** If there is data on the stream from before the
31 ** ioctl call, process it here.
32 */

Figure 5-10: continued on next page

Compatibility 5-33

C
om

pa
tib

ili
ty

Programmer-Level Compatibility

Figure 5-10: Continued

33-42
43 }
44
45 /*
46 ** Continue processing, if data arrives on fd this code will be
47 ** interrupted and the new data will be serviced by the signal
48 ** catching function. Remember that while we have I_SETSIG
49 ** active system calls may return -1 with errno set to EINTR.
50 */
51-87
88 /*
89 ** Stop watching for data on fd with the I_SETSIG ioctl.
90 */
91
92 ioctl(fd, I_SETSIG, 0);
93 }
94
95 static void
96 catchpoll(signo)
97 {
98 /* data has arrived on file descriptor fd */
99

100 /* reset the signal catching */
101 (void) signal(SIGPOLL, catchpoll);
102
103 /*
104 ** read and process new data
105 */
106-116
117 }

5-34 Compatibility

6 Manual Pages

DK 6-1

DKAUTH 6-6

DKCAT 6-14

DKCU 6-15

DKDO 6-19

PULL 6-21

PUSH 6-23

AUTHORIZE 6-26

Table of Contents i

Table of Contents

DKDAEMON 6-29

DKDEVS 6-37

DKIPUMP 6-39

DKITRC 6-40

DKLOAD 6-41

DKMAINT 6-44

DKREGISTER 6-46

DKSERVER 6-47

DKSRVERR 6-51

ii Table of Contents

Table of Contents

DKSTAT 6-54

DKUNLOCK 6-59

DK_FLUSH 6-60

DK_INFO 6-62

DK_NAMER 6-64

DK_UXINFO 6-65

DKDIAL 6-67

DKEPOINT 6-72

DKERR 6-74

Table of Contents iii

Table of Contents

DKGOS 6-81

DKLEVELD 6-83

DKMGR 6-86

DKSPLICE 6-93

DKSPLWAIT 6-96

DKTSPLICE 6-98

DKURPCTL 6-100

DKXENVIRON 6-101

MAPHOST 6-102

iv Table of Contents

Table of Contents

DKACCT 6-104

DKAUDIT 6-106

DKDOTAB 6-109

DKGROUPS 6-111

DKHOSTS 6-113

DKSRVLOG 6-115

DKUIDTAB 6-117

SRVTAB 6-118

DKHS 6-127

Table of Contents v

Table of Contents

DKMX 6-130

DKPE 6-131

DKTLI 6-132

DKTY 6-134

DKUX 6-137

DKXQT 6-140

vi Table of Contents

DK (1C) (Release 4.0) DK (1C)

NAME
dk – remote login or command execution via host interface

SYNOPSIS
dk [-j] destination [command [args ...]]

destination [command [args ...]]

DESCRIPTION
If no command is specified, the dk command sends a remote login request to the
destination host. The destination host spawns a shell and the dk command logically
connects it to the user’s terminal. An AT&T data switch circuit is used to transfer
data.

The remote shell bypasses the normal login sequence if you have been previously
authorized access to the destination machine, through the use of authorize(1M).
Instructions on the authorization process are found in the "Authorization" section.

The environment variables LOGNAME, HOME, and SHELL are initialized from
/etc/passwd on the destination. The PATH variable is initially set from the environ-
ment of the dkserver(1M) that accepts the call and may be modified by the user’s
profile. Other environment variables may be passed from the calling host to the
destination host by listing them in the local environment variable DKEXPORT (for
example, ’DKEXPORT=TERM,LINES,COLUMNS’). The HOME directory is
made the current directory.

The shell on the remote destination host is spawned with $0 set to ’– Dsh’ so that
the files /etc/profile and $HOME/.profile are executed before it prompts for any com-
mands. The system accounting files are updated by dkserver(1M) for the benefit of
who(1) and system accounting.

To exit from the remote shell, enter the Control-D sequence (or exit). If the pro-
gram on the remote destination refuses to hang up, typing your QUIT character
twice, rapidly, will break the connection from the calling end.

When invoked with the -j option, dk ignores job control for output control. This
allows dk to run in the background, and therefore, run to completion when the
user’s shell provides job control capabilities (such as ksh and jsh).

NOTE: This may cause problems because the -j option allows the remote system
to change the stty settings for the login terminal or, in terms of job control, the
controlling terminal.

When invoked with a command argument to be remotely executed, dk causes a
process to be spawned on the specified remote destination host and executes the
given command there.

The actions taken are as previously described for remote login, except that the
profiles are executed with $0 set to ’– Xsh’, no login accounting is done, and the
program terminates after executing the single command.

6-1

DK (1C) (Release 4.0) DK (1C)

dk may appear in a pipeline. Any use of standard input, standard output, or stan-
dard error on the remote destination is mapped into the same file descriptor
locally. In particular, if standard output of the dk command is redirected, error
messages will still be written to the terminal.

Linking the dk program to the names of popular hosts allows you to invoke the
same commands by their destination names without using ’dk’.

dk uses the file /etc/opt/dk/dkhosts [see dkhosts(4)] to map the destination name to the
appropriate data switch dialstring and to select the service to be invoked on that
host. If the destination name contains no ’.’ or is not listed in dkhosts(4), dk will
assume the ’rl’ or ’rx’ service for remote login or execution, respectively. To call
hosts that don’t support these services, or to call devices such as dialers in a
modem pool, use the dkcu(1C) command. This could be done automatically by dk
with the proper listing of options in dkhosts(4).

Authorization
In order to most effectively use this command, the user should be authorized on
all hosts that will be used. This authorization process is accomplished using the
command

dkauth destination

The remote destination will prompt the user for a login and passwd that are
found in /etc/passwd on the remote host. If the user answers correctly, the authori-
zation service [see authorize(1M)] makes an entry in a translation file [see dkuid-
tab(4)] on the destination host that maps the originating host and user ID to a user
ID on the remote host. Once the entry is made in dkuidtab(4), subsequent remote
execution/login will bypass the login procedure on the remote destination.

Environment Variables
If the shell variable DKKEY is set in the user’s environment, then that string is
used as a matching token when authorizing. The token value is then used when
mapping the originating host user ID to a user ID local to the destination host. For
example,

DKKEY=token dkauth destination

The DKKEY value is stored in the dkuidtab(4) file on the remote destination host.
Thus, from any given originating host and user ID, by changing the value of
DKKEY, a user can remotely login as a number of different user IDs on a given
remote host.

Multiple Interfaces
If multiple interface boards are installed on the originating host the dk(1C) com-
mand will use the default processing to select the interface for the outgoing call.
See dkauth(1C) for more information.

6-2

DK (1C) (Release 4.0) DK (1C)

EXAMPLES
The following command lines show the different ways that the dk command may
be used. The dk command may be used for remote login specifying the dialstring
of a remote data switch host as in:

dk wombat

where ’wombat’ is mapped into the appropriate data switch dialstring [see
dkhosts(4)].

A valid data switch dialstring may be specified for remote login as in:

dk area1/exch1/host1.rl.vx

where area1 is the area, exch1 is the exchange and host1 is the destination.

One can redirect the standard input, standard output, and standard error during
remote execution using the dk command. For example,

dk wombat cat x 2>/dev/null

will redirect the standard error messages to /dev/null.

Whenever you login from one machine to another, or remotely execute a com-
mand, your .profile is read to set up your environment the way you wish, so the
invoked command will get the right PATH, umask, etc. You should distinguish
between the different cases by the name of the invoked shell as it was stored in the
variable $0. The value of $0 will be ’– sh’ or ’– ksh’ for a login from ’DESTINA-
TION: ’, ’– Dsh’ for remote login via the dk command, and ’– Xsh’ for remote exe-
cution.

Since the user’s .profile is executed on the remote machine during remote execu-
tion, you should never do any prompting for terminal type (for example, if $0 ==
’– Xsh’) and you might not want to set tabs, for instance, if $0 == ’– Dsh’. Shell
variables such as TERM may be exported across system boundaries by setting
DKEXPORT.

Warning: When $0 == ’– Xsh’ the profile should never exec another pro-
gram (as in ’exec ksh’) or run any program that requests stan-
dard input from the terminal or sends standard output or
error to the terminal. If you fail to abide by this rule, your
attempts at remote execution may not be successful.

A sample which illustrates the proper setup of the .profile follows:

HOME=’pwd’
umask 022
PATH=$PATH:/opt/dk/bin:/bin:$HOME/bin:/usr/bin:/usr/ucb
DKEXPORT=TERM

6-3

DK (1C) (Release 4.0) DK (1C)

export PATH CDPATH HOME MAIL PS1 TERM DKEXPORT
MAIL=/usr/mail/$LOGNAME
EDITOR=vi ED=vi MAILER=mail
export EDITOR ED MAILER MAIL
PS1="HELLO>"
case $0
in

– Dsh)
remote login
echo "you are on ‘uname’"
trap ’echo logged off ’uname’’ 0
mesg n
;;

– Xsh)
remote execution
#
NEVER prompt for anything or ’exec’ another
program from this case. If you perform an
’exec ksh’ when $0 == ’ – Xsh’, remote execution
will not work.
;;

– sh | – ksh)
regular login
if ["’tty’" != "/dev/console" -o x${TERM} = "xansi"]
then

echo "TERM=\c"
read TERM

fi
mesg n
stty tabs erase ´^h´ kill ´^o´ echoe cr0
tabs
date
;;

esac

UNIX poll(2) command is supported in remote execution driver. This will enable
applications like EMACS to work over dk command. Refer to manual page on
poll(2) for further details on this feature usability.

FILES
/opt/dk/bin directory in which this command resides
/etc/opt/dk/dkhosts host control file for destination mapping
$HOME/.dkhosts local control file for destination mapping
/etc/opt/dk/dkuidtab default user ID mapping file
/dev/dkx/ intf .chan remote device names
/etc/profile

6-4

DK (1C) (Release 4.0) DK (1C)

SEE ALSO
dkauth(1C), dkcu(1C), authorize(1M), dkserver(1M), dkdial(3X), maphost(3X),
dkhosts(4), dkuidtab(4).
cat(1), login(1), passwd(1), who(1), poll(2) in the UNIX System V User’s Reference
Manual.

WARNINGS
The protocol used by remote login and remote execution has a large overhead and
users may notice that things appear to be much slower than a login session from a
’DESTINATION: ’ prompt or one initiated from a dkcu(1C) command. Single char-
acter output, in particular, is very inefficient, and for programs that don’t buffer
their terminal output, piping the results through cat(1) will often speed up output.

The user’s profiles must not read nor write anything to the standard output when
invoked for remote execution (where $0 == ’– Xsh’), or services based dk.

6-5

DKAUTH (1C) (Release 4.0) DKAUTH (1C)

NAME
dkauth - manage dkuidtab entries and authorize to remote hosts

SYNOPSIS
dkauth [– a] [– i intf_list – g group] area/exchange/host
dkauth – d [– u uidfile] [– l login]
dkauth – x [– u uidfile] [– l login] [originating_grp [.uid] [/DKKEY]]
dkauth – r [– u uidfile] [– l login] [originating_grp [.uid] [/DKKEY]]

DESCRIPTION
When invoked as a user-level command on the local host dkauth can:

1. Perform an authorize using the specified interfaces to the address, or

2. Display, delete, or rejuvenate the user’s dkuidtab entries.

Authorize to Remote Hosts
The dkauth options used to authorize a user to a remote host are:

-a The -a option will perform an authorize using the specified interfaces to the
address. In the absence of any option, dkauth assumes the -a option.

-i The -i option specifies a comma-separated interface list (or the special value
all to try all possible interfaces) for placing calls. The -i option overrides the
value of DKINTF. The -i option cannot be used with the -g option.

-g The -g option specifies a channel group defined in the dkgroups file. The -g
option cannot be used with the -i option.

The shell variable DKKEY can be used with dkauth.

On invoking the command:

dkauth -a host

The user is prompted for a remote login and password. Answering the login ID
prompt with a carriage return will cause the current authorization (if any) to be
deleted on the destination host.

When multiple interfaces are selected, authorization attempts are made on all
interfaces, even when a connection cannot be established. An error message from
dkdial(3X) is displayed detailing the reason for the connection failure.

Environment Variables
The environment variable, DKKEY, can be specified on the command line, how-
ever, if it is not specified, the following description applies.

If the shell variable, DKKEY, is set in the user’s environment, then that string is
used as a matching token when authorizing. The token value is used when map-
ping the originating host user ID to a user ID local to the destination host. For
example,

DKKEY=token dkauth destination

The DKKEY value is also stored in the dkuidtab(4) file on the remote destination.

6-6

DKAUTH (1C) (Release 4.0) DKAUTH (1C)

Thus, from any given originating host and user ID, by changing the value of
DKKEY, a user can remotely login as one of a number of different user ID’s on a
given destination host.

Multiple Interfaces
The CommKit Host Interface software supports multiple interface boards, allowing
connectivity to multiple data switch networks or redundant connectivity to a sin-
gle network. If the interfaces reside in different data switch Originating Groups, an
authorization made from one interface will not be valid for calls established
through one of the other interfaces. The user can invoke the -i option to authorize
over selected or all interfaces. For example:

dkauth -a -i 0,1,3 nj/casino/slots

authorizes the current user on interfaces 0,1, and 3 to nj/casino/slots.

In the absence of the -i option, the command allows interface selection by using
the DKINTF environment variable. When DKINTF is not set, any one of the inter-
faces is used.

For example, on a host with two interfaces connected to the same data switch, a
user can authorize from the originating machine to the destination machine
through both interfaces with the following command:

DKINTF=0,1 dkauth destination

The DKINTF variable may be set and exported in the .profile file or by shell scripts
if the interface preference is required across several connection attempts.

Manage dkuidtab Entries
Invoking dkauth with the -d, -x, or -r option allows the user to manage entries in
the dkuidtab file. The following options are supported with the -d, -x, and -r
options:

-l login This option specifies the local user ID (other than the default ID) for
which mapping information is desired. The default is the user ID of
the user executing the command. Only root may specify any login
other than its own. All other users may only specify their own login.

– u uidfile This specifies the dkuidtab file which dkauth should use to get the
user ID mapping information. The default file is /etc/opt/dk/dkuidtab.

Display Using the -d option will display the user’s dkuidtab entries. By
default, the current user’s dkuidtab entries are displayed, how-
ever, root can display the dkuidtab entries for all users by speci-
fying all as the login name.

Delete The -x option is used to delete the user’s dkuidtab entries. By
default, -x deletes all dkuidtab entries for the specified user. A
user can control which entries to delete by specifying an ori-
ginating group with an optional .uid and /DKKEY field. The
command will delete the dkuidtab entries based on all fields; if
the uid or DKKEY option is missing, that field will be ignored

6-7

DKAUTH (1C) (Release 4.0) DKAUTH (1C)

for matching criteria.

Rejuvenate The -r option rejuvenates the user’s dkuidtab entries. By default,
-r updates all entries for the specified user. A user can change
which entries to rejuvenate by specifying an originating group
with an optional .uid and/or /DKKEY field. The command will
rejuvenate the dkuidtab entries based on all fields; if the uid or
DKKEY option is missing, that field will be ignored for matching
criteria.

Whenever the passwd(4) entry is changed on the destination host,
the user must rejuvenate authorization service to update dkuid-
tab(4).

EXAMPLES
Remote Authorization

The following example shows a remote authorization to a system with the old
authorize service. This example uses the default selection of the interface with no
interface information displayed.

dkauth nj/casino/slots
Enter Remote login id: player
Enter Remote Password:
You are now authorized as player on nj/casino/slots

The next example shows a request to authorize on all interfaces with a failure on
one of the interfaces (specifically, interface 2).

dkauth -iall nj/casino/slots
Enter Remote login id: player
Enter Remote Password:
Intf 0: You are now authorized as player on nj/casino/slots
Intf 1: You are now authorized as player on nj/casino/slots
dkdial: Can’t open /dev/dk/dial2, errno 19: No such device
Intf 3: You are now authorized as player on nj/casino/slots

The next example shows a request to authorize on selected interfaces.

dkauth -i 0,3 nj/casino/showboat
Enter Remote login id: star
Enter Remote Password:
Intf 0: You are now authorized as star on nj/casino/showboat
Intf 3: You are now authorized as star on nj/casino/showboat

The next example shows an authorization on a remote system on a specific inter-
face being removed by means of entering a carriage return at the Login prompt.

6-8

DKAUTH (1C) (Release 4.0) DKAUTH (1C)

dkauth -i 0 nj/casino/showboat
Enter Remote login id:
Intf 0: Your entry on nj/casino/showboat from nj/shore/bird.1939 has been deleted.

The following example shows a remote authorization to a system with the new
authorize service:

dkauth nj/casino/showboat
Enter Remote login id: captain
Enter Remote Password:
You are now authorized as captain on nj/casino/showboat from nj/shore/bird.1939

The above example, using the new authorize service displays origination informa-
tion (from nj/shore/bird.1939).

Display Authorization
As an example, the command:

dkauth -d -l major

USER major ON SYSTEM post HAS BEEN AUTHORIZED FROM:

area/exch/group uid#
---------------------- ------

nj/casino/slots 12 authorization expired
nj/casino/showboat 345

nj/casino/ocean 67/defg

will locally invoke dkauth. The above display is based on the assumptions:

1. This command is executed by root or user major on host post

2. User ID 12 on nj/casino/slots has been authorized/mapped to user
major on host post, but major’s password on post has been changed
since the authorization

3. User ID 345 on nj/casino/showboat has been authorized/mapped to
user major on host post

4. User ID 67 on nj/casino/ocean has been authorized/mapped to user
major on host post with DKKEY=defg.

Any display line followed by authorization expired means that authorization is
no longer valid for one of the following reasons:

1. The password for the user has expired,

2. The password for the user has been changed.

This is an indication that the user for whom the authorization check was done
(user major in the example) needs to re-authorize to the local host (post) from the
specified remote host (slots).

6-9

DKAUTH (1C) (Release 4.0) DKAUTH (1C)

Delete Authorization
Consider the following examples of the -x option:

dkauth -x nj/casino/slots
dkauth -d -l major

USER major ON SYSTEM post HAS BEEN AUTHORIZED FROM:

area/exch/group uid#
------------------------- ------

nj/casino/showboat 345
nj/casino/ocean 67/defg

The above example has deleted all entries from the group nj/casino/slots.

dkauth -x nj/casino/showboat.354
dkauth -d -l major

USER major ON SYSTEM post HAS BEEN AUTHORIZED FROM:

area/exch/group uid#
------------------------- ------

nj/casino/slots 12 authorization expired
nj/casino/showboat 345

nj/casino/ocean 67/defg

This example has not deleted any entries as there were none with a group uid of
354.

dkauth -x nj/casino/ocean/defg
dkauth -d -l major

USER major ON SYSTEM post HAS BEEN AUTHORIZED FROM:

area/exch/group uid#
------------------------- ------

nj/casino/slots 12 authorization expired
nj/casino/showboat 345

This example has deleted all entries with the DKKEY value defg.

Rejuvenate Authorization
Consider the following example of the -r command:

dkauth -r nj/casino/slots
dkauth -d -l major

6-10

DKAUTH (1C) (Release 4.0) DKAUTH (1C)

USER major ON SYSTEM post HAS BEEN AUTHORIZED FROM:

area/exch/group uid#
------------------------- ------

nj/casino/slots 12
nj/casino/showboat 345

nj/casino/ocean 67/defg

FILES
/etc/opt/dk/dkgroups channel group control file
/etc/opt/dk/dkuidtab default user ID mapping file
/etc/opt/dk/dkuidtab:o backup copy of the user ID mapping file
/etc/passwd password file
/etc/shadow encoded password file

SEE ALSO
authorize(1M), dkserver(1M), dkdial(3X), dkgroups(4), dkuidtab(4).
passwd(1) in the UNIX System V User’s Reference Manual.

DIAGNOSTICS
When a user attempts to execute the dkauth command, several error messages
may result. The exit code is zero for normal exit, otherwise it is one of the follow-
ing types from dkit/sysexits.h:

EX_USAGE Usage errors.

EX_SOFTWARE Internal processing error occurred (invalid process_option).

EX_DATAERR Invalid interface value in DKINTF.
Unknown loginid in /etc/passwd from -l login.

EX_OSERR The expected UNIX system operation failed.

EX_OSFILE Invalid dkuidtab entry
uidfile update failed.

EX_NOPERM Attempting to access a loginid other than user’s, when not the
super-user.

dkdial error messages and dkdial return codes are documented in dkdial(3X).

All error messages are preceded by the string <Progname>:. Most of those mes-
sages are documented below.

Unknown login ’<login>’

The specified loginid is invalid.

Permission denied to examine ’<loginid>’

A user other than root is not permitted to specify a loginid other than
her/his own with the -l option.

6-11

DKAUTH (1C) (Release 4.0) DKAUTH (1C)

Permission denied to examine all entries
Only the super user may specify -l all.

Cannot access uidfile ’<uidfile>’, <UNIX error>

The specified uidfile does not exist or could not be opened. UNIX_error
gives the reason.

Cannot specify a <option> when doing remote authorization
The user specified a -u or -l option either with no other options or with the
-a option.

Cannot specify interfaces when <action> authorization information
The user specified a -i option with one of the following actions: displaying
-d, rejuvenating -r, deleting -x.

uid <uidnum> not found in password file
The user didn’t specify the -l option with the -d, -r, or -x options. When the
command attempted to convert the current user’s UID to a loginid it
failed.

Could not open uidfile ’<uidfile>’ for reading, <UNIX_error>
The named uidfile could not be accessed to read the data. The
<UNIX_error> describes the UNIX error for the failed access.

Uidfile ’<uidfile>’ is corrupted.
Please notify the System Administrator.

The named uidfile contains invalid entries. If this is not a test uidfile, the
UNIX system administrator should be notified.

Cannot change uid to correct value, <UNIX_error>
The uid cannot be processed.

DKINTF contains invalid interface value: ’<ivalue>’
The ivalue is not defined for this system.

Failed to get login id, <UNIX_error>
The command failed to read the user’s remote login id because of the
<UNIX_error>.

Intf <inum>: <Authorization error messages>
Any message other than those listed above are output from the authorize
service from the remote system. See authorize(1M) for details of these mes-
sages.

A variety or error messages relating to updating the dkuidtab file may be generated
when using the -d, -x, and -r options. For example:

Cannot create uid update file ’<tmpfile>’, <UNIX_error>
When attempting to create the tmpfile to update the dkuidtab, the file crea-
tion failed for the specified <UNIX_error>.

6-12

DKAUTH (1C) (Release 4.0) DKAUTH (1C)

Login information for ’<loginid>’ not available.
When attempting to get the loginid’s updated password the password
entry was not available. This is probably a problem with /etc/passwd
and/or /etc/shadow.

Cannot create temp file ’<tmpname>’, <UNIX_error>
The command cannot create a temporary file, <tmpname>, for processing of
the option, -l all. The value of <UNIX_error> defines the problem with
creating the file.

In addition, a variety of error messages dealing with a failure of the dialstring may
be generated. For example:

Intf <inum>: Login prompt from <dialstring> failed, <UNIX_error>
Reading of the login prompt from dialstring failed because of
<UNIX_error>. The connection to the remote system was on the interface
specified by inum; if no interface was specified this information is not
displayed.

6-13

DKCAT (1C) (Release 4.0) DKCAT (1C)

NAME
dkcat – concatenate files and send them to a non-host AT&T data switch destina-
tion

SYNOPSIS
dkcat [– I] [– F] [– q qc,ec] destination [files ...]

DESCRIPTION
dkcat transmits files to a non-host destination, such as a printer, attached to your
data switch network. dkcat places a call to destination and transmits the files.
dkcat waits for all file data to be received at the destination before terminating.

The following options are supported by dkcat :

– F Send a form-feed character after each file. This is the only
option available for garden-variety printers.

– I Selects Imagen-specific processing.

– q qc,ec Specifies a "quote character" qc and an "EOF character" ec to
override the defaults of 155,158. The character definitions must
be in decimal format separated with a comma, with no spaces
between the definitions.

destination If the destination is not a full network address, i.e.,
area/exchange/end-point, then dkcat will attempt to map it to a
full address using the file /etc/opt/dk/dkhosts and a service class
of p (for printer).

files Standard input is read if no files are named or when a file name
of "– " is encountered.

Multiple Interfaces
If multiple interface boards are installed on the originating host, dkcat will use the
default processing to select the interface for the out-going call. See dkauth(1C) for
more information.

FILES
/opt/dk/bin directory in which this command resides
/etc/opt/dk/dkhosts host control file for destination mapping
$HOME/.dkhosts local host control file for destination mapping

SEE ALSO
dkauth(1C), dk_flush(3X), dkdial(3X), maphost(3X), dkhosts(4).

6-14

DKCU (1C) (Release 4.0) DKCU (1C)

NAME
dkcu – call another host

SYNOPSIS
dkcu [– s] [– f] [– d] [– r] [– v] [– w] [– x] [– b 7 8] destination

DESCRIPTION
dkcu dials another UNIX System, a terminal, or possibly a non-UNIX System. It
manages an interactive conversation with possible transfers of ASCII files.

It places a call to the destination host or terminal on the AT&T data switch net-
work. Several options are supported by dkcu:

– s Suppresses the "Circuit Open" and other non-error messages.

– f Forces a dkcu even if the user came in as a remote executor.

– d Used to get tracing and diagnostic output.

– v Local environment variables may be passed from the calling host to the desti-
nation host by listing them in the local environment variable DKEXPORT
(such as, DKEXPORT=TERM,LINES,COLUMNS). When using this option,
the destination should be appended by rl and vt flags (such as, dkcu - v
destination.rl.vt) and the user should be authorized [see authorize(1M)] on the
destination host.

– w Wait until an end of file (e.g., hang up) condition on the conversation before
terminating the dkcu session. By default, dkcu immediately terminates
when its TTY standard input file descriptor returns an end of file condition.
When interacting with an operator at a TTY device, or when dkcu is being
executed in background, this is often the preferred behavior. However,
when dkcu TTY standard input is coupled to a shell script or other program
through a pipe, this behavior has the side effect of stopping the dkcu session
to the remote end point before all of the output from that end point has been
displayed or processed. The -w command-line option forces dkcu to wait
for an end of file condition on its conversation before exiting. This allows all
of the conversation’s data from the remote end point to drain to dkcu stan-
dard output. In the example below, the -w command line option is used to
prevent dkcu from exiting prematurely:

cat script_file | dkcu -w xmpladrs | myprogrm

– x Requests that XON/XOFF output flow control be done locally; otherwise,
XON/XOFF characters are passed through to the destination.

– r Turn off all "˜" processing except "˜ ." and "˜ %break." When using the – r
option, all other lines beginning with " ˜ " will return a restricted mode error
message.

– b bits
Used to force the number of bits per character processed on the connection.
Valid values for bits are 7 and 8. The default is 7 bit characters unless the
terminal is set for 8 bit characters and no stripping of input characters to 7
bits.

6-15

DKCU (1C) (Release 4.0) DKCU (1C)

After making the connection, dkcu runs as two processes: the transmit process
reads data from standard input and, except for lines beginning with tilde (˜),
passes it to the remote system. The receive process accepts data from the remote
system and, except for lines beginning with ˜, passes it to standard output. Lines
beginning with ˜ have special meanings.

The transmit process interprets the following:

˜ . Terminate the conversation. If the program on the remote
host isn’t reading input, typing the QUIT character twice,
rapidly, will break the connection.

˜ ! Escape to an interactive shell on the local system.

˜ !cmd . . . Run cmd on the local system (via sh – c).

˜ $cmd . . . Run cmd locally and send its output as standard input to the
remote system.

˜ %cd [dir] Change directory to $HOME or dir on the local system.
Note: ˜ !cd will cause the command to be run by a sub-shell,
probably not what was intended.

˜ %take from [to] Copy file from (on the remote system) to file to on the local
system. If to is omitted, the from argument is used in both
places.

˜ %put from [to] Copy file from (on local system) to file to on remote system.
If to is omitted, the from argument is used in both places.
Permission to create or overwrite the to file must be
allowed.

˜ %break Transmit a BREAK to the remote system (which can also be
specified as ˜ %b).

˜ %debug Toggles the -d debugging option on or off (which can also
be specified as %d).

˜ %divert Toggles unsolicited diversion (enabled/disabled) to files.
When unsolicited diversion is enabled, new-style diversion
from standard output to a file is initiated by
˜ [local]>:filename, and is terminated by ˜ [local]>, where
local is the nodename of the local system. This enables
˜ %take to operate properly when dkcu is used over multi-
ple hops.

˜ %old Toggles old-style diversion syntax (enabled/disabled).
When unsolicited diversion is enabled, old-style diversion
uses ˜ >:filename to initiate output diversion and ˜ > to ter-
minate it. Enabling old-style diversion does not prevent
new-style diversion from working.

6-16

DKCU (1C) (Release 4.0) DKCU (1C)

˜ t Prints the values of the termio structure variables for the
user’s terminal (useful for debugging). See termio(4) for
more information.

˜ ˜ . . . Send the line "˜ . . ." to the remote system.

The use of ˜ %put requires stty(1) and cat(1) on the remote side. It also requires
that the current erase and kill characters on the remote system be identical to the
current ones on the local system. Backslashes are inserted at appropriate places.

The use of ˜ %take requires the existence of echo(1) and cat(1) on the remote sys-
tem. Also, stty tabs mode should be set on the remote system if tabs are to be
copied without expansion.

When ˜ %take is used to transfer files, the filename cannot exceed the length
imposed by the UNIX system. This length limit is discussed in the termio(7)
manual page. Additionally, the values MAX_CANON and MAX_INPUT defined
in /usr/include/sys/param.h and /usr/include/limits.h affect the filename length. The
shell uses a complex if statement to determine if the named file in the ˜ %take
transfer exists; approximately 180 characters should be provided in the buffer for
this if statement. Therefore, the actual filename size should be these values
(MAX_CANON, MAX_INPUT) minus 180.

When dkcu is used on system A to connect to system B and subsequently used on
system B to connect to system C, commands on system B can be executed by using
˜ ˜. Executing a tilde command reminds the user of the local system uname. For
example, uname can be executed on C, A, and B as follows:

uname
C
~[A]!uname
A
~ ~[B]!uname
B

Note that [A] and [B] are output by dkcu, not typed by the user. In general, ˜
causes the command to be executed on the original machine, while ˜ ˜ causes the
command to be executed on the next machine in the chain.

The suspend character (usually ˆZ) puts the current foreground process of the
remote system in the background. The dkcu process of the local system can be
suspended (placed in the background) with ˜ ˆZ.

Multiple Interfaces
If multiple interface boards are installed on the originating host, dkcu will use the
default processing to select the interface for the outgoing call. See dkdial(3X) and
authorize(1M) for more information.

FILES
/opt/dk/bin directory in which this command resides

6-17

DKCU (1C) (Release 4.0) DKCU (1C)

SEE ALSO
pull(1C), push(1C), authorize(1M), dkdial(3X).
cat(1), echo(1), stty(1), cu(1C), uucp(1C), termio(4), termio(7) in the UNIX System V
User’s Reference Manual.

DIAGNOSTICS
Exit code is zero for normal termination initiated with ˜ . on the local host, non-
zero otherwise.

WARNINGS
dkcu should be used with the - x option on terminals that are directly connected to
a host.

NOTES
dkcu buffers input internally.

There is an artificial slowing of transmission by dkcu during the ˜ %put operation
so that loss of data is unlikely. If the to file of ˜% put cannot be created, an error
message will be displayed, but the from file will then be written to /dev/null.

6-18

DKDO (1C) (Release 4.0) DKDO (1C)

NAME
dkdo – transparent remote execution facility

SYNOPSIS
dkdo [– f controltable] command [args ...]

command [args ...]

DESCRIPTION
dkdo provides a generalized, transparent remote execution facility with automatic
file transfer. One use of dkdo is to emulate a command such as lp(1) requiring
facilities like line printers or RJE support not present on the local machine. It
works by placing a call through the AT&T data switch network to a host that does
have the required facilities, sending any input file arguments to the remote sys-
tem, executing the command there, then bringing back any output files.

The input files are placed in a new directory created under /tmp on the remote
machine which is used as the current directory when the command is invoked.
Any files created in that directory by the command are brought back to the
current directory on the local machine upon completion. The remote command is
executed with the same standard input, output, and error file descriptors as on the
local machine.

The function of the command is controlled by a controltable which describes how
the commands are to be executed and the format of the arguments. If not speci-
fied by the ’- f’ argument, the default file /etc/opt/dk/dkdotab is used. The format of
the controltable is described in the manual page for dkdotab(4).

Invoking the program by the name dkdo is the explicit invocation format. Usu-
ally, however, the second, implicit format is used by linking the dkdo program to
lp(1) or another program. Then users may use the emulated command as if it were
actually located on the local machine. In this case the link name, that is, lp(1) is the
command that will be remotely executed.

Multiple Interfaces
If multiple interface boards are installed on the originating host, then dkdo will
use the default processing to select the interface for the outgoing call. See
dkauth(1C) for more information.

FILES
/opt/dk/bin directory in which this command resides
/etc/opt/dk/dkhosts host control file for destination mapping
$HOME/.dkhosts local host control file for destination mapping
/etc/opt/dk/dkdotab default dkdo control table

6-19

DKDO (1C) (Release 4.0) DKDO (1C)

SEE ALSO
dkauth(1C), maphost(3X), dkdotab(4), srvtab(4).
lp(1) in the UNIX System V User’s Reference Manual.

DIAGNOSTICS
The dkdo command will fail on the remote machine if there is no space left in the
file system containing /tmp. One of the following error messages will appear on
the user’s terminal on the local machine:

mkdir: Failed to make directory "dkdo. xyz";
No space left on device

dkpp: cannot link filename

dkpp: filename extract write error

where filename is the full pathname of the file to be transferred to/from the
remote/local host computer. Lack of space on the remote is not the only case
where these error messages may appear.

6-20

PULL (1C) (Release 4.0) PULL (1C)

NAME
pull – transfer files from another system

SYNOPSIS
pull [- L] destination filename ... directory

DESCRIPTION
pull establishes an AT&T data switch circuit to a source (remote) host named in
destination and transfers files from that host.

The filenames are files or directories on the source machine and are interpreted
relative to the user’s HOME directory on the source destination if they do not begin
with a ´/´. The filenames are placed in the directory on the target (local) machine. If
the directory does not begin with a ´/´ it is interpreted relative to the current direc-
tory. The directory will be created, if required, before the files are transferred.
Specifying a directory as one of the filenames will transfer the entire directory tree
beginning at the named point.

pull preserves the file modes and modification times of the files it moves. The ori-
ginal file owner (numeric user ID) is preserved if the effective user ID of the pro-
cess on the local machine is root ; otherwise, the files will be owned by the current
user.

pull preserves the name, type and contents of the files it moves with the following
exceptions.

Long Names
If the target file system does not support file names greater
than 14 characters and the source machine transfers a file with a
name greater then 14 characters, the name will be truncated to
14 characters. The local side will warn the user for each file
name that is truncated.

Symbolic Links
Files of type symbolic link will be preserved unless the ’– L’
option is used. A transferred symbolic link will be identical to
the source file. It may, however, have a different context in the
target environment. If the ’– L’ option is used, the source
machine will be asked to follow symbolic links with the follow-
ing behaviors: the symbolic link will be treated as if it were the
file type of the file pointed to. If the file does not exist or the
user does not have permission to access the file, no transfer will
take place and the source machine will issue a warning. If, in
following a path that contains a symbolic link that points to a
directory, the source machine finds a directory that has already
been transferred, it will not transfer it a second time. The source
however, will always transfer directories in a path that does not
contain a symbolic link even if that directory has already been
transferred while following a path that does contain a symbolic
link. In both cases, the source machine will warn the user for

6-21

PULL (1C) (Release 4.0) PULL (1C)

every affected directory.

The push(1C) and pull commands invoke the pupu program (/opt/dk/bin/pupu) on the
remote system to handle the remote end of all file transfers. If the srvtab(4) file on the
remote system invokes the pupu program with the ´– r´ option, file transfers will be res-
tricted to/from the home directory tree on the remote system by disallowing all paths
that begin with a leading ´/´ or that contain an embedded ´ ..´ specification. In this res-
tricted mode, only transfers containing PATHs relative to the HOME directory will be
accepted.

Multiple Interfaces
If multiple interface boards are installed on the originating host, the pull com-
mand will use the default processing to select the interface for the out-going call.
See dkdial(3X) and authorize(1M) for more information.

WARNINGS
If the source destination is identical to the target host and the source directory is
identical to the target directory, then the pull command will overwrite filename
and its contents may be destroyed.

The modification times are preserved on transferred files as long as they are ear-
lier in relative time (i.e., seconds since the 00:00:00 GMT, January 1, 1970, epoch)
than the current relative time on the local machine. If the modification time for a
file would date that file in the future on the local machine, the current time on the
local machine will be used as the file modification time.

FILES
/opt/dk/bin directory in which this command resides
/etc/opt/dk/dkhosts host control file for destination mapping
$HOME/.dkhosts local host control file for destination mapping

SEE ALSO
push(1C), authorize(1M), dkdial(3X), maphost(3X), dkhosts(4), srvtab(4).
time(2) in the UNIX System V Programmer’s Reference Manual.

6-22

PUSH (1C) (Release 4.0) PUSH (1C)

NAME
push – transfer files to another system

SYNOPSIS
push [– L] destination filename ... directory

push [– L] destination – directory < file_list

DESCRIPTION
push establishes an AT&T data switch circuit to the target (remote) host named in
destination and transfers files to that host.

The filenames are files or directories on the source (local) machine. The filenames
are placed in the directory on the target machine. If the directory does not begin
with a ´/´, it is interpreted relative to the user’s HOME directory on the target des-
tination. The directory will be created, if required, before the files are transferred.
Specifying a directory as one of the filenames will transfer the entire directory tree
beginning at the named point.

The second command format takes the list of files to transfer from the standard
input. It differs from the first format, however, in that the position of the files in
input pathnames is preserved. For example,

push lxho9 a/b c a/d/e /tmp/one

creates files /tmp/one/b, /tmp/one/c, and /tmp/one/e, while

push lxho9 - /tmp/two <<!
a/b
c
a/d/e
!

creates files /tmp/two/a/b, /tmp/two/c, and /tmp/two/a/d/e. The second format is use-
ful in combination with find(1) to select portions of a directory tree to transfer.

push preserves the file modes and modification times of the files it moves. The
original file owner (numeric user ID) is preserved if the effective user ID of the
process on the target machine is root . Otherwise the files will be owned by the
user’s login on the target host.

push preserves the name, type and contents of the files it moves with the follow-
ing exceptions.

Long Names
If the target machine is a SVR4 implementation but the target
file system does not support file names greater than 14 charac-
ters and the source machine transfers a file with a name greater
then 14 characters, the file name will be truncated to 14

6-23

PUSH (1C) (Release 4.0) PUSH (1C)

characters. The remote side will warn the user for each file
name that is truncated.

Long Names
If the target machine is not a SVR4 implementation and the
source machine transfers a file with a name greater then 14
characters, the name will usually be truncated to 14 characters.
Note: A few pre-SVR4 implementations support long file
names but the push command has no way of knowing if these
systems do or do not. The local side will warn the user for each
file name that may be truncated.

Symbolic Links
Files of type symbolic link will be preserved unless the ’– L’
option is used or the target machine does not support symbolic
links. A transferred symbolic link will be identical to the source
file; it may, however, have a different context in the target
environment. If the ’– L’ option is used or the target machine
does not support symbolic links, the source machine will follow
symbolic links with the following behaviors: The symbolic link
will be treated as if it were the file type of the file pointed to. If
the file does not exist or the user does not have permission to
access the file, no transfer will take place and the source
machine will issue a warning. If, in following a path that con-
tains a symbolic link that points to a directory, the source
machine finds a directory that has already been transferred, it
will not transfer it a second time. The source machine, however,
will always transfer directories in a path that does not contain a
symbolic link even if that directory has already been
transferred while following a path that does contain a symbolic
link. In both cases the source machine will warn the user for
every affected directory.

The push and pull(1C) commands invoke the pupu program (/opt/dk/bin/pupu) on the
remote system to handle the remote end of all file transfers. If the srvtab(4) file on the
remote system invokes the pupu program with the ´– r´ option, file transfers will be res-
tricted to/from the home directory tree on the remote system by disallowing all paths
that begin with a leading ´/´ or that contain an embedded ´ ..´ specification. In this res-
tricted mode, only transfers containing PATHs relative to the HOME directory will be
accepted.

Multiple Interfaces
If multiple interface boards are installed on the originating host the push com-
mand will use the default processing to select the interface for the out-going call.
See dkdial(3X) and authorize(1M) for more information.

6-24

PUSH (1C) (Release 4.0) PUSH (1C)

WARNINGS
If the source host is identical to the target destination and the source directory is
identical to the target directory, then the push command will overwrite filename
and its contents may be destroyed.

The modification times are preserved on transferred files as long as they are ear-
lier in relative time (i.e. seconds since the 00:00:00 GMT, January 1, 1970, epoch)
than the current relative time on the local machine. If the modification time for a
file would date that file in the future on the local machine, the current time on the
local machine will be used as the file modification time.

FILES
/opt/dk/bin directory in which this command resides
/etc/opt/dk/dkhosts host control file for destination mapping
$HOME/.dkhosts local host control file for destination mapping

SEE ALSO
pull(1C), authorize(1M), dkdial(3X), maphost(3X), dkhosts(4), srvtab(4).
time(2) in the UNIX System V Programmer’s Reference Manual.
find(1) in the UNIX System V User’s Reference Manual.

6-25

AUTHORIZE (1M) (Release 4.0) AUTHORIZE (1M)

NAME
authorize – host authorization service

DESCRIPTION
authorize is the host authorization service. The service establishes the mapping of
a valid user ID on the originating host to a valid user ID on the destination host
using the Originating Group name. This mapping allows a user to bypass the
login(1) process when connecting to another host on the same AT&T data switch
network.

The authorize routine maintains the /etc/opt/dk/dkuidtab file [see dkuidtab(4)], which
is owned by root and contains information on how to map user IDs from incom-
ing calls to valid user IDs. authorize also creates and maintains a log file (which
you should clean out periodically) of all successful and unsuccessful authorization
attempts. The format and name of this log file is documented below.

The authorize routine leaves a file in /etc/opt/dk called dkuidtab:o This file is a work-
ing copy of the dkuidtab file and can be ignored.

The -l login and -u uidfile options previously supported with the authorize com-
mand are now included in the dkauth command (refer to the dkauth(1C) manual
page for details). If a user specifies the -l or -u option with authorize an error
message is returned.

Environment Variables
If the shell variable, DKKEY, is set in the user’s environment, then that string is
used as a matching token when authorizing.

The DKKEY value is also stored in the dkuidtab(4) file on the remote destination.
Thus, from any given originating host and user ID, by changing the value of
DKKEY, a user can remotely login as one of a number of different user ID’s on a
given destination host.

Log File
The authorize command creates and maintains a log file (owned by root with
mode 0600) of all authorization attempts, whether they were successful or unsuc-
cessful. This log is kept in the file /var/opt/dk/log/dkuidlog and will grow without
bound unless it is periodically cleaned by the administrator.

The format of the authorization log file is very similar to the format used by su(1).
The fields contained in the log are: the string DK, the date and time of the
attempted authorization, a status flag that indicates the outcome of the attempt, the
Originating Group of the requester, the numeric user ID of the requester (with a
/dkkey_value appended if there was a DKKEY included in the request), and finally,
the login name requested in the attempt.

The status flag will be one of four possible values:

+ The requester supplied a correct login/password combination and
was granted an authorization.

6-26

AUTHORIZE (1M) (Release 4.0) AUTHORIZE (1M)

E The requester supplied a correct login/password combination but
was denied authorization because the password had expired.

0 The requester supplied a correct login/password combination but
was denied authorization because the requested login had a user ID of
zero (authorizations may not take place to super-user logins).

– The requester supplied an incorrect login/password combination and
was denied authorization.

Here are several sample authorization log entries:

DK 10/20 15:50 – nj/jail/hacker 100– guest
DK 10/20 15:50 – nj/jail/hacker 100/dkey– sys
DK 10/20 15:50 0 nj/jail/hacker 0– root
DK 10/20 15:54 – nj/jail/warden 11221– fake
DK 10/20 15:54 – nj/jail/warden 11221– fake
DK 10/20 15:58 E nj/jail/warden 11221– fake
DK 10/20 16:00 + nj/jail/warden 11221– fake
DK 10/20 16:36 + nj/wecare/support 0– guest

FILES
/opt/dk/sbin directory in which this command resides
/etc/opt/dk/dkuidtab default user ID mapping file
/etc/opt/dk/dkuidtab:o backup copy of the user ID mapping file
/etc/passwd password file
/etc/shadow encoded password file

SEE ALSO
dkauth(1C), dk(1C), dkserver(1M), dkdial(3X), srvtab(4), dkuidtab(4).
login(1), mail(1), passwd(1), su(1) in the UNIX System V User’s Reference Manual.

DIAGNOSTICS
When a user attempts to execute the authorization service, several error messages
may result. Most of those messages are documented below.

Sorry, whitespace in a DKKEY is forbidden

The DKKEY variable must not contain certain non-printing characters.

The password for this login has expired.
You’ll need to get it rejuvenated first.

The authorize program will not allow a user to become authorized to a
login that has an expired password. The user should "rejuvenate" the pass-
word on the remote system and try again.

You’re just guessing

This occurs if the user attempts to login incorrectly more than three times
in a row.

6-27

AUTHORIZE (1M) (Release 4.0) AUTHORIZE (1M)

Sorry, root not allowed

The root user ID cannot be authorized on a remote system.

You are too slow

This is printed when the authorize program times out.

Your entry on destination from user has been deleted.

This is printed when the Please login: prompt is answered with a car-
riage return. The current authorization (if any) is deleted on the remote
destination host. user is the origination information: originating
group.uid#/DKKEY of which the DKKEY is optional.

The file uidfile is corrupted, so you can’t be authorized.
Please notify the System Administrator for host.

The uidfile is the user ID mapping table [see dkuidtab(4)]. The authorize
program will currently detect one type of corruption. If the number of
fields in a line of uidfile is less than three, this message is printed. The host
is the remote host specified on the command line.

You are currently being mapped into user.

where user is a user name and one of the following self-explanatory mes-
sages will be printed:

That user no longer exists on this machine.

But the password has changed.

But the password has expired.

Unsupported option, use dkauth(1C) instead.

The user has specifed the -l or -u option with authorize; these options are
no longer supported with the authorize command. These options are sup-
ported with dkauth.

/etc/opt/dk/dkuidtab: No such file or directory.
Call the System Administrator.

This error may indicate that the dkuidtab has been deleted.

6-28

DKDAEMON (1M) (Release 4.0) DKDAEMON (1M)

NAME
dkdaemon – host interface daemon process

SYNOPSIS
dkdaemon [– i interface] [– t] [– x] [– l logfile] [– v verbosity] [– a [acctfile]]
[– c channels] [– b urpblocks] [– p protocol] [– w windowsize]

DESCRIPTION
dkdaemon is the host interface daemon process. The primary purposes of dkdae-
mon are to:

1. Retain the dkux(7) call processing module on each dkhs(7) Stream associated
with an AT&T data switch Common Signaling Channel.

2. Support accounting, logging and auditing. The auditing records are defined
in dkaudit(4).

3. Provide dynamic linking and unlinking of dkhs(7) Streams for the remote
execution [see dkxqt(7)] and TLI [see dktli(7)] subsystems.

All actions of dkdaemon are controlled via command line arguments.

The following arguments select the subsystem or subsystems that will be serviced
and may be specified in any combination and order:

– i interface Service dkhs(7) physical interface number interface. One – i option
may be specified for each installed interface board.

– t Service the dktm TLI subsystem driver.

– x Service the dkxqt(7) remote execution subsystem driver.

When invoked with none of the above options, dkdaemon services all possible
dkhs(7) interfaces and subsystems. When any of these options are used it limits
dkdaemon to servicing the specified subsystem(s) or interface(s). If multiple
dkdaemon processes are used with overlapping services, only one dkdaemon will
support the service. Using the default action may result in the logging of extrane-
ous ERROR or WARNING messages in a less than fully configured system.

Several command line arguments may be used to alter the default logging and
auditing modes of dkdaemon:

– l logfile Use logfile for activity logging instead of the default file
/var/opt/dk/log/dkdaemonlog. The full pathname for logfile must be
specified or the logfile will be created in /var/opt/dk/log. This
audit trail includes:

A. Activity/status, ERROR and WARNING messages that
are described in the DIAGNOSTICS section

B. Connection auditing messages described in dkaudit(4)

6-29

DKDAEMON (1M) (Release 4.0) DKDAEMON (1M)

C. Undocumented debugging messages that appear only at
high verbosity levels.

– v verbosity Use verbosity as the logging level instead of the default value of 5. The
normal range for log level is 1 through 9. A larger verbosity number
means more log detail is desired. Increasing the logging verbosity above
nine will cause the logging file to grow large with undocumented and
useless messages very quickly. The verbosity level must be between 1
and 99 (inclusive) as shown in the table below.

Log Level Logged Information Definition

1 Initialization, file errors, invalid inbound
UNIXP messages dkdaemon(1M)

2 Device startups and errors dkdaemon(1M)
4 Server startups and errors dkaudit(4)
5 Outgoing connection requests dkaudit(4)
6 Valid inbound UNIXP messages dkaudit(4)
7 Outbound UNIXP messages dkaudit(4)
8 STREAMS link and unlink dkdaemon(1M)
9 Outbound UNIXP keepalive messages dkaudit(4)
>9 Developer diagnostics dkdaemon(1M)

– a [acctfile] Enable dkhs(7) data transfer, connect time accounting, and optionally
use acctfile as the accounting file instead of the default file
/var/opt/dk/log/dkacct. The full pathname for acctfile must be specified or
the acctfile will be created in /var/opt/dk/log. The format of these account-
ing records is described in dkacct(4).

When dkdaemon contacts the dkux(7) module for each physical dkhs(7) interface, it con-
figures several global interface parameters with built-in default values that may be over-
ridden through command line options. These options and the built-in default values are
described below. The built-in default values are adequate for all customer installations
and these options are provided for advanced host applications and for developer conveni-
ence. The parameters apply to all dkhs(7) interfaces controlled by the dkdaemon process.
Use a separate dkdaemon process for each interface if you wish to vary the parameters for
each interface.

– c channels The number of channels to be used by the host interface. Maximum
value should be the lower of 512 or the tunable channel limit configured
by the dkhs(7) driver. The tunable channel limit configured on your
machine is defined by the dkMAXchans variable in
/usr/include/dkit/globals.h. Minimum value allowable is 3. The built-in
default value for channels is 64 .

– b urpblocks Number of outstanding URP data blocks used for transmit window cal-
culation on protocol 4 hosts connected to data switches. The default
transmit window for incoming and outgoing calls is divided into urp-
blocks URP data blocks. Applications are free to select their own
transmit window parameters [See dk_info(3X)] after the call is esta-
blished, and this option is silently ignored unless the protocol is set to 4 .

6-30

DKDAEMON (1M) (Release 4.0) DKDAEMON (1M)

The value of urpblocks must be a number between 1 and 7 (inclusive) and
the built-in default value is 4.

– p protocol Selects the call setup protocol used by the host interface. Two protocol
values are supported. The default value of 4 selects the protocol used by
newer data switches and is sufficient for most installations. The
optional value of 2 selects the protocol used by older data switches.
This option does not imply, nor will it provide, support for a direct con-
nection to older data switches. It is provided for some rare instances
where older endpoints on the network may be confused by valid
parameters of the window size negotiation. In these cases protocol 2
may provide a less efficient but always valid window size negotiation.
The dkux(7) call processing module automatically negotiates down to
protocol 2 if it is connected to an older data switch. The user, however,
must be aware that while this appears to work there are incompatibili-
ties with the older switches that are insurmountable. For the reasons
stated above dkux(7) will never negotiate up to protocol 4 if a value of 2
is specified.

– w windowsize Configures the Receive Buffer Size used by the host interface when
transmit window negotiation occurs during incoming and outgoing call
setup processing. The built-in default value of 1024 should not be
changed or loss of data may result. windowsize must be a power of 2 in
range of 64 and 2048 (inclusive).

FILES
/opt/dk/sbin directory where this command resides
/dev/dk/ctlX dkhs(7) Common Signaling Channel device for

interface X
/dev/dknp/daemon TLI subsystem control device
/dev/dk/dkxmx0 remote execution subsystem control device
/var/opt/dk/log/dkdaemonlog default log file
/var/opt/dk/log/dkacct default accounting file

SEE ALSO
dkdiag(1M), dkitrc(1M), dkmaint(1M), dkserver(1M), dk_info(3X), dkacct(4), dkaudit(4),
dksrvlog(4), dktli(7), dkux(7), dkxqt(7), dkhs(7).
chdir(2), fork(2), poll(2), signal(2) in the UNIX System V System Administrator’s Refer-
ence Manual.
ioctl(2), malloc(3) in the UNIX System V Programmer’s Reference Manual.

DIAGNOSTICS
dkdaemon produces status and error messages as appropriate for the cir-
cumstances. Option and startup errors are written to standard error, and opera-
tional errors and warnings are written to the logfile with a timestamp prefix. Con-
nection auditing messages are described in dkaudit(4). The value of Prog is the
name used to start the dkdaemon command.

6-31

DKDAEMON (1M) (Release 4.0) DKDAEMON (1M)

Startup errors include:

Prog: Illegal Protocol Value Specified

The Value passed to the – p protocol command line option was invalid.

Prog: Illegal Number of Channels Value Specified

The Value passed to the – c channels command line option was out of range.

Prog: Illegal Receive Buffer Size Value Specified

The Value passed to the – w windowsize command line option was not a legal
power of 2.

Prog: Illegal Number of Outstanding Blocks Value Specified

The Value passed to the – b urpblocks command line option was not within the
inclusive range of 1 to 7.

Prog: Illegal Log Level verbosity Specified

The Value passed to the – v verbosity command line option was not within the
inclusive range of 1 to 99.

Prog: Cannot open "logfile" as log file

dkdaemon could not open logfile as its logging file.

Prog: Unable to chdir(Directory), errno = Code

Error Code was returned when dkdaemon attempted to chdir(2) to Directory .
Find out why Directory does not exist or what is wrong with it.

Prog: Unable to fork, errno = Code

Error Code was returned when dkdaemon attempted to fork(2) itself into the
background.

Status and error messages written to the log file are used to audit events that may
be of interest to the administrator and do not necessarily suggest an error. Errors
are identified with the word ERROR and tend to be localized to a client subsys-
tem.

acct_start: ERROR on open("acctfile"), errno Code

Error Code was returned when dkdaemon attempted to open acctfile as the
accounting file. The process continues with accounting mode disabled.

acct_start: Accounting Started to "acctfile"

The dkdaemon accounting routines successfully opened acctfile as the
accounting file.

acct_start: Accounting Disabled

6-32

DKDAEMON (1M) (Release 4.0) DKDAEMON (1M)

Accounting mode was shut off either as requested or as a result of a previ-
ously logged error. If accounting is desired, dkdaemon must be manually
restarted.

acct_write: ERROR write Got expect Length, errno Code

A write to the accounting file returned Got when Length was expected. Code is signifi-
cant only when Got is – 1. Any error writing to the accounting file will disable
accounting mode.

dkhsstart: ERROR open(Device), errno=Code

Error Code was returned when dkdaemon tried to open Device as a dkhs(7) controlling
channel device.

dkhsstart: Unit interface: channels Chans, Ver protocol, Rbuf windowsize, NurpB urpblocks

Audit of dkdaemon attempts to program physical host interface board interface with
channels channels, call processing protocol version protocol, per-channel receive buffer
size windowsize and a default of urpblocks URP blocks per transmit window. This
message is logged before the programming attempt and does not suggest success or
failure.

dkhsstart: ERROR dkhs Unit interface can’t DKDAEMON, errno=Code

Error Code was returned when dkdaemon attempted to start dkhs(7) interface interface
with the DKDAEMON ioctl(2). This happens when two dkdaemon processes both
attempt to start a single interface.

dkhsopen: ERROR open(Device), errno=Code

Error Code was returned when dkdaemon tried to open Device in response to an
I_LINK request from one of its client subsystems.

dkhsopen: ERROR DKGETMODCHAN, Device errno=Code

Error Code was detected when dkdaemon tried to determine the identity of a newly
clone-opened Device during the service of an I_LINK request from one of its client
subsystems.

Prog: Started, Log Level = verbosity

Written to the log file during dkdaemon startup as a record of the session logging
verbosity.

Prog: UNKNOWN SIGNAL – Value

A signal with integer value Value was received unexpectedly. See signal(2).

Prog: SIGHUP

The dkdaemon process received a SIGHUP signal that will cause a full re-
initialization of all client subsystems.

6-33

DKDAEMON (1M) (Release 4.0) DKDAEMON (1M)

Prog: WARNING Termination Requested

dkdaemon received a SIGTERM request to stop and will honor the request by exit-
ing.

Prog: Exiting

This message is logged immediately before dkdaemon exits normally.

genstart: ERROR open(Device), errno=Code

Error Code was returned when dkdaemon tried to open Device as an administrative
daemon device.

get_msg: getmsg vdatlen Length, ERROR errno = Code

A getmsg(2) system call returned error Code unexpectedly. A subsystem client
request message with up to Length bytes of variable length data had been expected.

get_msg: ERROR bad len Got, SB Length, ret = Return, flags = Flags

A message of length Got was received when dkdaemon expected to receive a proto-
col message of size Length. The Return code and Flags are set by the getmsg(2) system
call. The contents of the unexpected control and/or data portion of the message are
printed, followed by a service ERROR that identifies the client driver that sent the
improperly formatted message. This message will only be logged if the dkdaemon
log level is greater than 8.

send_msg: ERROR putmsg type = Type vdatlen Length, errno = Code

Error Code was returned when dkdaemon attempted to send response type Type with
variable length data of size Length.

parse: ERROR Name Unit interface bad cmd, type Type vdatlen Length

An unrecognized command with a type Type was received from interface interface of
subsystem client Name. The request included Length bytes of variable length data.
This is likely caused by a software error in the driver described by Name.

parse: ERROR Name Unit interface vdata missing, type Type vdatlen Length

A request of type Type from subsystem client Name unit interface did not include the
required variable length data buffer. This is likely caused by a software error in the
driver described by Name.

parse: ERROR Name, Unit interface bad fixed vdata size, type Type vdatlen Got, SB Length

A request of type Type from subsystem client Name unit interface included a variable
length data buffer of Got bytes but Length bytes were expected. This is likely caused
by a software error or a temporary resource exhaustion in the driver described by
Name.

parse: ERROR Name Unit interface unexpected vdata type Type vdatlen Length

6-34

DKDAEMON (1M) (Release 4.0) DKDAEMON (1M)

A request of type Type from subsystem client Name unit interface included a variable
length data buffer when none was expected. This is likely caused by a software error
in the driver described by Name.

parse: Name Unit interface Handler type Type returned RetVal

The Handler for type Type client messages returned a failure (with value RetVal)
while servicing a request for Name unit interface. This message should be preceded by
one or more ERROR messages from the failed Handler.

push_modules: ERROR errno = 255 "dkux"

dkdaemon was unable to push the dkux(7) module on a dkhs(7) Stream. This error is
always followed by a startstr message and usually shows that an attempt was made
to start two dkdaemon processes for a single dkhs(7) interface.

push_modules: ERROR errno = Value "Module"

The more general form of the previous message; dkdaemon was unable to I_PUSH
the Module module on a Stream. Should be followed by additional ERROR messages
that identify the Handler, request and client.

the_daemon: ERROR configpoll failed, n= Integer

A malloc(3) memory allocation failure prevented dkdaemon from building tables
necessary for its operation and the process has exited. The memory requirements are
small and this failure should never happen.

Prog: Startup Complete

All required tables have been built; dkdaemon has entered its processing loop and
will start trying to bring its clients into service.

the_daemon: WARNING Restart Requested

The dkdaemon process has received a restart signal, UNIX System signal ’1’, and will
reinitialize all its client subsystems. This will drop any data switch connections on
the client interfaces and restart any server processes on those interfaces.

the_daemon: ERROR Serious Poll errno Code

Error Code was received unexpectedly from a poll(2) system call and the dkdaemon
process will reinitialize all its client subsystems.

startstr: Name Unit interface ACTIVE

Subsystem service client Name unit interface has been brought into service.

startstr: Name Unit interface Down, Retrying

An attempt to bring subsystem client Name unit interface into service failed and
dkdaemon will periodically retry until successful or until a fatal error is detected.
This may also occur when a dkdaemon tries to start an interface that is running diag-
nostics [see dkdiag(1M)].

6-35

DKDAEMON (1M) (Release 4.0) DKDAEMON (1M)

startstr: Name Unit interface DROPPED

An attempt to bring subsystem client Name unit interface into service failed in a seem-
ingly fatal way and dkdaemon has given up trying to service that client. A new
dkdaemon process may be started for the failed client once the problem has been
corrected.

timed_poll: No Work, Terminating.

The dkdaemon process is exiting because it has DROPPED all its configured clients.

service: ERROR get_msg Name Unit interface, Ret= RetVal

The dkdaemon service manager detected an abnormal return value RetVal when try-
ing to read a request from subsystem client Name unit interface. The client will be res-
tarted.

service: ERROR parse, halting Name Unit interface

The request parser and Handler dispatcher returned a fatal status to the service
manager for client Name unit interface. The client will be restarted.

6-36

DKDEVS (1M) (Release 4.0) DKDEVS (1M)

NAME
dkdevs – make special device files for host interfaces

SYNOPSIS
dkdevs [– i interface] ... [– c channels] [– v verbosity]

DESCRIPTION
dkdevs is a program used to make special files in the /dev directory. dkdevs
checks for the presence of directories and special files in the /dev directory
required by the host interface software, and makes entries as needed.

dkdevs is called every time the system enters init state 2, or it can be run manually
by the super-user. When run without the – i option, dkdevs determines how
many host interfaces are installed in the system, and makes the necessary special
files. Since dkdevs checks for the presence of the required directories and files
before creating them, the /dev directory is not modified if the host interface direc-
tories and files already exist.

The following flags are recognized by dkdevs:

– i interface Specifies the host interfaces for which the special device files
are to be made. Multiple interfaces can be specified on one
line by specifying multiple ’– i’ options. For example, ’– i0
– i1’ makes the special device files for interfaces zero and
one. When no ’– i’ option is specified, dkdevs examines the
UNIX System configuration files to determine how many
host interfaces are configured on the system, then creates all
the appropriate directories and special files.

– c channels Specifies the number of raw driver channels to create for
each interface. Maximum value should be the lower of 512
or the tunable channel limit configured by dkhs(7) driver.
The channel limit configured on your machine is defined by
dkMAXchans variable in /usr/include/dkit/globals.h.
Minimum allowed value is 3. The built in default channel
value is 64.

– v verbosity Used for debugging and troubleshooting. The level of
debugging information can be specified in the range of 1-9.
A larger verbosity number means more debugging informa-
tion is desired. If an out of range value is used it will be set
to the nearest legitimate value. The dkdevs command
works silently without the ’– v’ option.

FILES
/opt/dk/sbin directory where this command resides

6-37

DKDEVS (1M) (Release 4.0) DKDEVS (1M)

/etc/conf/cf.d/mdevice UNIX Device master file (non-3B2 machines)

/etc/conf/cf.d/sdevice UNIX Device system file (non-3B2 machines)

/etc/master.d directory containing UNIX System configuration
files (3B2 machines)

/dev/dkpeX special files for physical interface X (3B2
machines)

/dev/dk directory containing "raw" dkhs(7) special files

/dev/dkt directory containing dkty(7) terminal driver spe-
cial files

/dev/dkx directory containing dkxqt(7) remote execution
driver special files

/dev/dknp directory containing daemon special file

/dev/dktpX dktli(7) transport provider special files for inter-
face X

In the /dev/dk* directories, the host interface software will make use of special files
in the format x.yyy where x indicates the interface number, and yyy indicates the
channel number.

SEE ALSO
dkhs(7), dktli(7), dkty(7), dkux(7), dkxqt(7).
master(4), mdevice(4), sdevice(4) in the UNIX System V System Administrator’s Refer-
ence Manual.

DIAGNOSTICS
The dkdevs command reports errors when it cannot open the required UNIX Sys-
tem configuration files, or when it cannot find the host device driver information
configured in the system. The command will also report problems encountered
making directories and device nodes in the /dev directory.

6-38

DKIPUMP (1M) (Release 4.0) DKIPUMP (1M)

NAME
dkipump – download CommKit Host Interface module

SYNOPSIS
dkipump interface [download_file]

DESCRIPTION
dkipump downloads operational software to the CommKit interface board speci-
fied by the interface.

The operational software is taken from download_file if specified, or
/opt/dk/lib/m.dkit if no second argument is given. dkipump then downloads the
specified interface with the download file. After the download is complete, dki-
pump initializes the AT&T data switch interface hardware for operation.

The interface board is downloaded when the dkdaemon(1M) is started, but may
also be downloaded manually using the dkipump command.

FILES
/opt/dk/sbin directory in which this command resides
/opt/dk/lib/m.dkit default operational system download file
/dev/dkpe intf download device file

SEE ALSO
dkdaemon(1M), dkpe(7).

DIAGNOSTICS
The following error messages may result when invoking dkipump.

ksh: /opt/dk/sbin/dkipump: cannot execute

You must be a superuser to execute dkipump.

dkipump: Cannot pump interface while dkdeamon is active

The interface must not be active when the command is run.

dkipump: Cannot pump - already pumped

The user can only pump the board once.

6-39

DKITRC (1M) (Release 4.0) DKITRC (1M)

NAME
dkitrc – rc shell for host interface software

SYNOPSIS
dkitrc { start stop }

DESCRIPTION
dkitrc is executed automatically during init state transitions with an argument of
either start or stop. Its function is to start/stop the host interface in an appropri-
ate fashion for the prevailing init state.

When invoked with an argument of start, the dkitrc script invokes dkdevs(1M) to
create appropriate special files and then starts a dkdaemon(1M) process to initialize
the host interface. Following the startup of the dkdaemon(1M) process, dkitrc will
automatically reserve the channel groups [dkgroups(4)] by means of dkmaint(1M)
and then start a dkserver(1M) process.

If invoked with an argument of stop, dkitrc stops the dkdaemon(1M) and
dkserver(1M) processes.

FILES
/etc/init.d directory in which this resides
/etc/rc0.d/K15dkitrc linked to /etc/init.d/dkitrc
/etc/rc1.d/K80dkitrc linked to /etc/init.d/dkitrc
/etc/rc2.d/S15dkitrc linked to /etc/init.d/dkitrc

SEE ALSO
dkdaemon(1M), dkdevs(1M), dkmaint(1M), dkserver(1M), dkgroups(4), dktli(7).
init(1M) in the UNIX System V System Administrator’s Reference Manual.

6-40

DKLOAD (1M) (Release 4.0) DKLOAD (1M)

NAME
dkload – load test the host interface and check for errors

SYNOPSIS
dkload destination .dkload [– s size] [– n iterations] [– l logfile]

DESCRIPTION
dkload is a program used to test whether the host interface to an AT&T data
switch is operative and may be used to load test the interface. dkload sets up a
virtual circuit between two data switch hosts and then sends and receives fixed
sized data messages over the circuit. dkload must be run as root.

dkload may call any host in a data switch network that has the service dkload
defined in its srvtab(4). The host is specified by the destination on the command
line [see dkhosts(4)].

The following flags are recognized by dkload:

– s size The message size that will be read and written. The default is 512
and the maximum size is 10240. A blank must separate the flag
from the size.

– n iterations The number of iterations that dkload should run. The default is
zero and is interpreted as a request to run infinitely. A blank must
separate the flag from the iterations.

– l logfile File where timing information and error messages are logged. The
default logfile is /tmp/dkloadlog.

When running dkload between two data switch hosts, the path
specified for logfile must exist on both hosts. The path on the local
machine is relative to the current directory, while the path on the
remote machine is relative to the root directory (/). A logfile will
be opened on each host, and each dkload process will write to the
logfile on the host on which it is executing.

When the local and remote host are the same, one logfile will be
opened, and the dkload processes on both sides of the virtual cir-
cuit will write to the one file.

The default logfile will be used on the remote host if the remote
dkload cannot open the requested file for writing.

Multiple Interfaces
If multiple interface boards are installed on the originating host dkload will use
the default processing to select the interface for the out-going call. See dkauth(1C)
for more information.

6-41

DKLOAD (1M) (Release 4.0) DKLOAD (1M)

FILES
/opt/dk/sbin directory in which this command resides
/tmp/dkloadlog default dkload log file
/etc/opt/dk/srvtab/dkload srvtab(4) entry
/etc/opt/dk/dkhosts host control file destination mapping

SEE ALSO
dk(1C), dkauth(1C), dkhosts(4), srvtab(4), dkhs(7).
read(2), write(2) in the UNIX System V Programmer’s Reference Manual.

DIAGNOSTICS
The following error and diagnostic messages are reported by dkload :

REMOTE could not open logfile as log

When the remote dkload cannot open the requested logfile , this error mes-
sage is written to the default logfile .

dkload LOCAL started at time to command PID=process_ID
dkload REMOTE started at time from command PID=process_ID

where command is made up from the command line and looks like:

destination..:– s:size:– n:iterations:– l:logfile.

This initialization information may be used to verify that the correct argu-
ments were sent and received by dkload.

After the first three bytes are transmitted and each time an additional 2048 bytes
of data is transmitted, an entry is made in the remote logfile specifying the process
ID, total number of bytes transmitted, and the time elapsed in seconds. When
dkload detects bad reads, writes, and corrupted data it writes the error messages
to the logfile . The messages to the logfile are distinguished by the words REMOTE
and LOCAL, depending on whether the dkload on the remote or local side of the
virtual circuit wrote the message.

LOCAL TEST FINISHED OK
REMOTE TEST FINISHED OK

The test finished successfully. The message will also include the process
ID, time, and number of messages sent. The nread variable indicates the
number of bytes read in the last iteration, and countread specifies the
number of iterations received.

REMOTE TEST FINISHED WITH ERRORS: Data Corruption
LOCAL TEST FINISHED WITH ERRORS: Data Corruption

Some of the characters received did not match the expected characters.
Each corrupted character is written to the logfile along with the expected
character as they are encountered. This message will also include the pro-
cess ID, time, and number of messages sent. The nread variable indicates
the number of bytes read in the last iteration, and countread specifies the

6-42

DKLOAD (1M) (Release 4.0) DKLOAD (1M)

number of iterations received.

LOCAL WRITE FAILED
REMOTE WRITE FAILED

A write(2) unexpectedly failed.

LOCAL READ FAILED
REMOTE READ FAILED

A read(2) unexpectedly failed.

LOCAL END OF FILE
REMOTE END OF FILE

The local or remote dkload process was killed manually.

LOCAL READ LENGTH ERROR
REMOTE READ LENGTH ERROR

The number of bytes returned from a read(2) was incorrect.

LOCAL Read string != Write string
REMOTE Read string != Write string

dkload detected data corruption. Each corrupted byte is written to the logfile
along with the expected value.

6-43

DKMAINT (1M) (Release 4.0) DKMAINT (1M)

NAME
dkmaint – host interface maintenance

SYNOPSIS
dkmaint – i interface [– s – r [– c channel]] [– v]
dkmaint [– g – C] group [– v]

DESCRIPTION
dkmaint is a program used to reset and perform other maintenance operations on
host interfaces or channels. When the – r option is specified, dkmaint sends an
ioctl(2) to the host interface driver which eventually causes M_HANGUP messages
to be issued to each process using the specified channel. Use of the – i option and
the – r option without the – c option resets all channels on a given interface. The
– s option displays the reserved channels for the specified interface. The – g
option names a channel group. The channels in the group are reserved through
the – g option, and cleared with the – C option. dkmaint must be run as root.

The following flags are recognized by dkmaint:

– r Reset-Used to reset the host interface or channel specified. Any
active connections on the interface/channel selected will be
closed as a result of the reset operation.

– i interface Specifies which host interface to reset. One and only one interface
must be specified on the command line. To reset all host inter-
faces installed on a system, dkmaint must be run multiple times.

– c channel Specifies a channel to reset. Combined with the – i option, a sin-
gle channel on a single interface is reset.

– v Verbose Option used for debugging and trouble shooting. The
dkmaint command works silently without the ’– v’ option.

– s Requests the display of the interface’s reserved channels.

– g Specifies the channel group whose channels are to be reserved.

NOTE: Channel 0 or 1 should never be a channel group or part of
a channel group.

– C Specifies the channel group whose reserved channels are to be released.

FILES
/opt/dk/sbin directory in which this command resides
/dev/dk/ctlX Common Signaling Channel device for interface X
/etc/opt/dk/dkgroups channel group control file

SEE ALSO
dkdaemon(1M), dkgroups(4), dkhs(7), dkux(7).
ioctl(2), close(2) in the UNIX System V Programmer’s Reference Manual.

6-44

DKMAINT (1M) (Release 4.0) DKMAINT (1M)

DIAGNOSTICS
The dkmaint command reports errors when it cannot open the driver control
device for the specified interface. It also reports if the host interface driver returns
an error when the ioctl(2) request is issued.

WARNINGS
Resetting a channel with dkmaint will cause the host interface driver to request
that the process currently using the requested channel release [close(2)] the chan-
nel. This is done by sending an M_HANGUP message from the driver up
STREAM to the process. This is designed to look like having the remote side of the
connection disappear. The action that the process takes is application dependent.

6-45

DKREGISTER (1M) (Release 4.0) DKREGISTER (1M)

NAME
dkregister – create CommKit Software registration record file

SYNOPSIS
dkregister

DESCRIPTION
dkregister is run by the software installation scripts to create the CommKit
Software validation record file necessary for using the software. The command
can also be run manually to recreate a damaged or incomplete validation record
file.

Do not run dkregister unless you know or have immediate access to your valid
software certificate number and matching software key because the old validation
record file will be deleted and the CommKit Software will become unusable until
the file is recreated.

FILES
/opt/dk/sbin directory in which this command resides
/etc/opt/.DK_Key_File validation record file
/etc/opt/.DK_Coord_File message time coordination file

DIAGNOSTICS
Exits with zero return status on success. Writes a descriptive error message to
standard error and exits with a non-zero status if any error is detected.

6-46

DKSERVER (1M) (Release 4.0) DKSERVER (1M)

NAME
dkserver – handle incoming calls from an AT&T data switch network

SYNOPSIS
dkserver [– i interface] [– s servername] [– v verbosity] [– c controltab]
[– u uidfile] [– e] [– S] [– l logfile] [– C channel] [– r]

dkserver – t [– i interface] [– s servername]

DESCRIPTION
The dkserver program identifies itself to the data switch network as being willing
to accept service requests. dkserver satisfies those requests by spawning new
processes and invoking programs based on the parameters given by the request.
The response to each service request is based on how the dialstring and identity of
the caller match entries in the controltab [see srvtab(4)]. Information on how to
map the users of remote hosts into their local identities is kept in the uidfile [see
dkuidtab(4)] maintained by the authorize(1M) program.

dkserver saves the values of the environment variables at the time it is started and
selectively passes them along in the initial environment of all commands invoked.
See the description of the – e argument and the section on environment variables
for more details.

dkserver maintains a log file of all incoming requests in logfile which should be
cleaned out periodically. You should check this file for lines containing the tokens
ERROR or DENIED which will indicate conditions that may need administrative
attention.

The default action when no options are specified is to start dkserver on the first
hardware interface using the machine’s nodename [see uname(2)] with default
values for the logfile, verbosity level, and controltab.

The default action of dkserver may be altered by the specification of one or more
of the following command line arguments:

– i interface U se interface instead of the first hardware interface (interface 0).
The interface should be specified as a numeric digit (for example,
1) If this option is omitted and the environment variable DKINTF
is set, dkserver will start the interface using the value of DKINTF.
If this option is used, the value for DKINTF will be ignored.

– s servername Use servername for the name of the server instead of the nodename
retrieved from the uname(2) system call.

– v verbosity The verbosity parameter controls the amount of information
recorded to the logfile about each incoming call. The range of
values is 1 to 9 (default 6) where increasing the value results in
progressively more log detail. An invalid specification of verbos-
ity will be rounded to the nearest legitimate value (that is, values
less than 1 will be rounded to 1 and values greater than 9 will be
rounded to 9). See the manual page for dksrvlog(4) for

6-47

DKSERVER (1M) (Release 4.0) DKSERVER (1M)

information on the content of the logfile.

– c controltab The directory or file controltab should be used as the dkserver
control table instead of the default directory /etc/opt/dk/srvtab.
The full pathname for controltab must be specified. [See srvtab(4).]

– u uidfile The file uidfile should be used to map the users of remote hosts
into their local identities instead of the default file
/etc/opt/dk/dkuidtab . The full pathname for uidfile must be speci-
fied. [See dkuidtab(4).]

– e Expand the base environment variables to include DKINTF and
merge them with the current environment. This expanded
environment will be passed as the initial environment of all com-
mands invoked. See the section on environment variables for
more details.

– S The logfile is made secure; only readable by root. The default per-
mission of logfile, as created by the dkserver, allows reading by
everyone. The logfile will only be readable by root if this option is
specified. However, the dkserver will not change the permission
of an existing logfile if this option is not used.

– l logfile Use logfile instead of the default file /var/opt/dk/log/dksrvlog . The
full pathname for logfile must be specified or the logfile will be
created in the current working directory of dkserver
(/etc/opt/dk/srvtab for multiple srvtab(4) files format or "/" for a sin-
gle srvtab(4) file format). [See dksrvlog(4).]

– C channel Specify the logical channel number desired to be used as the
dkserver channel. The channel selected has to be within the
channel range of the hunt group configured in the data switch
controller database for the servername specified through the – s
option of this command. (For more information about the multi-
ple groups per CPM feature provided by the AT&T data switches
– Datakit II VCS R3.1.1 and later – read the data switch documen-
tation on the enter cpmcommand.) If this option is not used, an
arbitrary channel will be selected.

– r This option will prevent dkserver from running in background
mode. This option is not needed if dkserver is spawned by
init(1M).

– t Gracefully terminate dkserver. No new incoming calls are
accepted, and when all existing calls are completed, dkserver
exits. This ensures proper cleanup of accounting files and should
be invoked in system shutdown procedures. The – i and – s
options may be used to specify the interface and dkserver name
to terminate. If neither – i or – s is specified, the default dkserver
(that is, dkserver for interface 0 with name nodename) will be ter-
minated.

6-48

DKSERVER (1M) (Release 4.0) DKSERVER (1M)

ENVIRONMENT VARIABLES
A base set of environment variables is always passed as the initial environment of
all commands invoked by dkserver. These variables are always set by the rules
given below and will never be overwritten or duplicated by use of the – e argu-
ment or by environment variables passed as part of a user service request. If the
– e argument is used, DKINTF will be added to the base set, any other environ-
ment variables will be merged with the base set and this expanded environment
will be passed to the invoked command. Environment variables that would
overwrite an existing variable from the base set will be ignored. If an incoming
user service request passes environment variables they will also be merged into
the environment variables passed to the invoked command. User requested vari-
ables that would overwrite an existing variable from the base set or from the – e
argument will be ignored.

BASE SET
LOGNAME The LOGNAME environment variable is always passed to the

invoked command. It is always set from the value found in the
/etc/passwd file for the user selected using the user field of the srvtab(4)
entry.

HOME The HOME environment variable is always passed to the invoked
command. It is always set from the value found in the /etc/passwd file
for the user selected using the user field of the srvtab(4) entry.

SHELL The SHELL environment variable is always passed to the invoked
command. It is always set from the value found in the /etc/passwd file
for the user selected using the user field of the srvtab(4) entry.

PATH The PATH environment variable is always passed to the invoked
command. If PATH is set in the dkserver environment, then that value
is used. If PATH is not set in the dkserver environment, then the
default value of /usr/bin:/usr/sbin:/usr/ccs/bin will be passed to the
invoked command.

TZ The TZ environment variable is always passed to the invoked com-
mand. If TZ is set in the dkserver environment, then that value is
used. If TZ is not set in the dkserver environment, then the default
value of EST5EDT will be passed to the invoked command.

DKINTF The DKINTF environment variable becomes part of the base set
when the – e argument is used. If DKINTF is set in the dkserver
environment, then that value is used, even if it is set to the null
string. If DKINTF is not set in the dkserver environment, then it will
be set to the match the hardware interface of dkserver.

FILES
/opt/dk/sbin directory in which this command resides
/etc/opt/dk/srvtab default request control directory
/etc/opt/dk/dkuidtab default user ID mapping file

6-49

DKSERVER (1M) (Release 4.0) DKSERVER (1M)

/var/opt/dk/log/dksrvlog default dkserver request log file

/etc/passwd password file

/etc/shadow encoded password file

/var/adm/utmp connection accounting

/var/adm/wtmp connection accounting history

/dev/console serious error messages

/var/opt/dk/log/dk. intf .srv lock file where intf is the interface and srv
is the server name

SEE ALSO
dk(1C), authorize(1M), dkitrc(1M), dksrvlog(4), srvtab(4), dkuidtab(4).
uname(2) in the UNIX System V Programmer’s Reference Manual.
init(1M), pwconv(1M) in the UNIX System V System Administrator’s Reference
Manual.

CAVEATS
Although it is not recommended, dkserver may be spawned by init(1M) (instead
of the dkitrc file) by including an entry in the /etc/inittab file such as:

dksxmpl:3:respawn: /opt/dk/sbin/dkserver -s hostname </dev/null \
>/dev/null 2>&1

If dkserver is spawned by init(1M):

1. All three standard file descriptors (0, 1, and 2) must be set open and
assigned to /dev/null or the dkserver will stall and the server will not
come up.

2. The dkserver process is not started unless the system has been placed
into run level 3 by the init command or system reboot.

WARNINGS
If the controltab format is changed from a directory format to a flat file format (or
vice versa) the dkserver must be restarted. dkserver must also be restarted after
running pwconv(1M). For systems that support the password file /etc/shadow,
dkserver must also be restarted after the file /etc/shadow is removed or newly
created.

If the PATH is longer than 512 characters, dkserver will complain and exit.

6-50

DKSRVERR (1M) (Release 4.0) DKSRVERR (1M)

NAME
dksrverr - Service Error mailer

SYNOPSIS
dksrverr loginid service origination [optional parameters]

DESCRIPTION
Unauthorized requests for CommKit Host Interface services will be rejected by the
host; dksrverr provides a trap mechanism to monitor these invalid attempts. To
active this mechanism, you must add the srvtab(4) line for dksrverr as the last
entry in the service’s srvtab(4) file. (See srvtab Format below.)

dksrverr accepts the incoming service request and displays a rejection message (as
shown below) to the originator.

REQUEST ’<service>’ from <origination> REJECTED (dksrverr)

With a valid loginid on the current system, service, origination, and any optional
parameters, the following mail message will be sent to the specified loginid:

Subject: DK Request rejected!

*** NOTICE ***

Machine ’<uname>’ has rejected a request for Datakit service!

Service: <service>
Originating group ID: <origination>
Additional info: <optional parameter 1>
Additional info: <optional parameter 2>

.

.

.
Additional info: <optional parameter n>

DK Service Error Detector (dksrverr)

The status of the command is seen in the dksrvlog for the server which received the
request.

Hex Value Status

ex0 Mail command was successful
ex100 Incorrect number of arguments
ex200 Invalid loginid
ex300 Cannot create pipe for mail
ex400 Could not fork for mail
ex* Failed mail command exit value. This is returned by

6-51

DKSRVERR (1M) (Release 4.0) DKSRVERR (1M)

the mail command and depends on the high order bit
Values may be 8N, 9A-9F. Obtain the correct exit value
by and’ing with 0x7F.

srvtab Format
The following shows the format of the srvtab line:

* service M loginid /opt/dk/sbin/dksrverr dksrverr:loginid:%e:%f.%u:node=%n, \

module=%m, channel=%c

The following parameter descriptions apply:

%c Originating channel number (see also %m and %n). channel=%c is
displayed with node=%n and module=%m on the first line of Addi-
tional info in the rejection mail message.

%e The requested service from the dialstring.

%f The Originating Group name from the dialstring. This has the ori-
ginating userid, %u, as a suffix.

%m The originating module number (see also %c and %n). module=%m is
displayed along with %node=%n on the first line of Additional info in
the rejection mail message.

%n The last field starting with node=%n is displayed as the first line of
Additional information in the mail message. (See also %c and %m.)

%u The user ID of the user placing the call.

Note: Other information can be sent in the mail message by adding additional
fields, which must be separated by a colon (:), to include other parameters from
the dialstring or any specific information.

EXAMPLES
The following example shows the usage of dksrverr for the whoami service.
srvtab and dksrvlog entries, and mail and rejection messages are similar for the
other CommKit Host Interface services.

srvtab entry for whoami:

System Service Flag User Program Initial Parms

#

#

nj/central/* whoami /u daemon /usr/bin/echo echo:You are:%u:from:%f...

#

* whoami M root /opt/dk/sbin/dksrverr dksrverr:root:%e:%f.%u:node=%n,\

module=%m, channel=%c:Name of srvtab control directory=%C

With the above srvtab entry, the following user command would generate the
rejection message as shown.

6-52

DKSRVERR (1M) (Release 4.0) DKSRVERR (1M)

dkcu nj/central/jersey1.whoami

REQUEST ’whoami’ from nj/south/citya.5035 REJECTED (dksrverr)

And, the following mail would be received by the loginid responsible for the
dksrverr command.

*** NOTICE ***

Machine ’jersey1’ has rejected a request for Datakit service!

Service: whoami
Originating group ID: nj/south/citya.5035
Additional info: node=STATE1, module=36, channel=14
Additional info: Name of srvtab control directory=/etc/opt/dk/srvtab

DK Service Error Detector (dksrverr)

The associated dksrvlog entries for this example are:

Apr 27 08:27:01 (17728) [0.253] REQUEST s=whoami, u=16521=root, r=nj/south/citya

Apr 27 08:27:01 (17728) [0.253] DEBUG line=5, flag=M, uid=root, file= \

/opt/dk/sbin/dksrverr, fixedparms=dksrverr:root:%e:%f.%u: node=%n, module=%m, \

channel=%c:Name of srvtab control directory=%C

Apr 27 08:27:01 (17728) [0.253] DEBUG linep=/dev/dk/0.253 rlinep=/dev/dk/0.253

Apr 27 08:27:01 (18054) [0.253] chkidle return 0 file = /opt/dk/sbin/dksrverr

Apr 27 08:27:01 (18054) [0.253] Send ioctl init = 3

Apr 27 08:27:01 (18054) [0.253] ORIGIN h=STATE1.36.14, c=/opt/dk/sbin/dksrverr

Apr 27 08:27:01 (18054) [0.253] SERVICE DENIED:ORIGIN h=STATE1.36.14, \

c=/opt/dk/sbin/dksrverr

Apr 27 08:27:02 (17728) [0.253] EXIT l=/dev/dk/0.253 p=18054 e=x0

FILES
/etc/opt/dk/srvtab/<service> srvtab information
dksrvlog files the specific dksrvlog for the server (default

/var/opt/dk/log/dksrvlog)
/bin/mail to send mail to loginid

SEE ALSO
dkserver(1M) dksrvlog(4) srvtab(4).

CAVEATS
Please note that if dksrverr is used for the "-" service, both the Reject message and
the mail to loginid will show nothing for the service. The dksrvlog will show the
service request was the "-" service. The reason is that when a user calls in without
a service, dkserver will default to the "-" service, but the %e will not be defined
because the user did not request a specific service on the dialstring.

6-53

DKSTAT (1M) (Release 4.0) DKSTAT (1M)

NAME
dkstat – print AT&T data switch interface status information

SYNOPSIS
dkstat [-i interface] [-c channel -s] [-gn] [-rx] [interval [iterations]]

DESCRIPTION
dkstat retrieves and reports various data switch interface and channel statistics
and performance information that is collected by the dkhs(7) driver as it operates.
This information is formatted and printed on the user’s terminal or may be piped
into another program for further analysis. Cumulative statistics for an interface
may be gathered and reported, or the statistics may be retrieved for a specified
interval one or more times.

The available options are:

– i interface Report statistics for interface instead of interface 0 which is the
default. Only a single interface may be specified per command
invocation.

– c channel Report statistics for a specific single channel on the selected inter-
face. The statistics for a channel are only available while that
channel is open. Once a channel is closed, the statistics are
summed into the channel summary statistics available through the
– s flag. Only root may specify this flag and only a single channel
may be examined during one command invocation.

– g Report global interface statistics for the selected interface.

– s Report summary of all channel statistics for the interface. This flag
reports the sum of the channel summary statistics and the indivi-
dual channel statistics for all open channels on the selected inter-
face.

– n Suppress all headers. This option allows the output of dkstat to
be piped into another program for graphing or tabulation of the
data.

– r Report only receiver related statistics.

– x Report only transmitter related statistics.

interval Gathers and reports statistics for the specified interval in seconds.
If no interval is specified, the cumulative statistics of the type
selected are gathered and reported.

iterations Specifies a repeat count for statistics gathering and reporting. The
output of dkstat is displayed in horizontal format when iterations
is greater than one. If no iterations is specified, the default value is
one.

6-54

DKSTAT (1M) (Release 4.0) DKSTAT (1M)

The Interface Statistics include statistics about hardware interrupts and errors,
driver scheduling and resource problems. The statistics collected are:

x_intr Transmitter interrupts from the host interface board.
These interrupts occur whenever the interface board
detects the transmit FIFO has made a transition from
more than half-full to less than half-full. Transmitter
interrupts are also software simulated by dkhs(7) when-
ever a receiver interrupt occurs and the transmit work
queue is not empty.

x_xhf The dkhs(7) transmitter processing routine detected the
transmit FIFO was more than half-full at some point
during the transmission of data.

x_hang The dkhs(7) transmitter checking routine detected the
transmit FIFO was not draining. This usually results in
an interface reset. A large x_hang count probably indi-
cates a hardware/fiber problem.

r_intr Receiver interrupts from the data switch interface board.
These interrupts occur whenever the interface board
loads incoming packet data into the receive FIFO caus-
ing the FIFO to make a transition from empty to not-
empty.

r_nobuf Number of incoming URP data packets dropped by the
dkhs(7) driver because of buffer exhaustion. This statistic
is the count of URP data packets dropped and is not a
count of user messages lost. A user message may consist
of many URP data packets. Dropped packets normally
result in the retransmission of data and adversely affect
performance by wasting network bandwidth.

r_parity Number of times the fiber optic receiver circuitry
reported a parity error for the received data stream.
Data with errors is discarded and normally results in a
retransmission. A large r_parity count probably indi-
cates a hardware problem.

r_frame Number of times the fiber optic receiver circuitry
reported a framing error for the received data stream.
Data with errors is discarded and normally results in a
retransmission. Momentary interruption of the fiber-
optic data link often causes a framing error. A large
r_frame count probably indicates a hardware problem.
A bad clock or repeater module on the data switch node
will cause the framing error count to increase rapidly.
This will cause communication problems between the
node and the host and may result in the loss of service to
the host.

6-55

DKSTAT (1M) (Release 4.0) DKSTAT (1M)

r_fbsync The receiver fiber out-of-sync condition detected. This
usually results in an interface reset. A large r_fbsync
count probably indicates a hardware/fiber problem.

r_ovrun Number of times the dkhs(7) receiver interrupt routine
detected that the hardware receive FIFO was over-
flowed. A receiver overrun causes data loss and nor-
mally results in a retransmission. A large r_ovrun count
indicates an overloaded system or a problem with higher
priority interrupts blocking interrupts to dkhs(7).

r_mute The receiver fiber mute condition detected. This usually
results in an interface reset. A large r_mute count prob-
ably indicates a hardware/fiber problem.

open_channels The number of open channels.

The dkhs(7) driver collects channel statistics for every active channel. These statis-
tics are available for individual channels while the channels remain active and are
available as an interface-wide channel summary whenever the interface is active.
Both Channel Statistics and Channel Summary Statistics contain the following
fields:

x_msgs User (STREAMS) data messages transmitted.

x_blocks URP data blocks transmitted. Each user STREAMS message
transmitted is broken up into one or more URP data blocks
during transmission across the data switch network. The size
of the URP data blocks is negotiated at call setup time.

x_bytes User data bytes transmitted.

x_enq Transmitter ENQuires sent. Whenever a transmitted URP data
block is not properly acknowledged by the remote endpoint
within the expected interval, the URP ENQ character is periodi-
cally transmitted until a satisfactory response is received.

x_init Number of URP INIT1 characters transmitted. These initializa-
tion characters are transmitted when a circuit is initialized or
reinitialized.

r_msgs User (STREAMS) data messages received.

r_blocks Valid URP data blocks received. A complete user message may
consist of one or more URP data blocks. The size of the URP
data blocks is negotiated at call setup time.

r_bytes User data bytes received.

r_badblk Bad URP data blocks received. Bad URP data blocks result in
the transmission of URP REJect characters which cause the bad
blocks to be retransmitted. These bad blocks can be received
when one or more packets are lost during transmission. This is
usually caused by noisy trunks or other network congestion,

6-56

DKSTAT (1M) (Release 4.0) DKSTAT (1M)

but may also be caused by STREAMS message exhaustion.

r_rej URP REJect characters received. The REJ characters are
received whenever a transmitted URP data block is lost or dam-
aged during transmission and is rejected by a remote endpoint.
The rejected block is retransmitted. URP data blocks are
rejected by remote endpoints when one or more packets are
lost during transmission. This is usually caused by noisy
trunks or other network congestion, but may also be caused by
buffer exhaustion at the remote endpoint.

r_enq URP ENQuire characters received. These ENQ characters are
transmitted by remote endpoints whenever a transmitted block
is not acknowledged within the expected interval.

r_ireq Number of URP INITREQ characters received. URP INITREQ
characters are received during circuit initializations or reinitiali-
zations.

r_init Number of URP INITn characters received. URP INIT0 and
INIT1 characters are received during circuit initializations or
reinitializations.

EXAMPLES
dkstat

prints a complete cumulative summary of the statistics associated with
interface 0.

dkstat – s 60 60

reports a summary of all channel statistics gathered during 60-second
intervals over a period of 1 hour.

dkstat – i1 – c1 120

provides a 2 minute snapshot of channel 1 (Common Signaling Channel)
activity for interface 1.

FILES
/opt/dk/sbin directory in which this command resides
/dev/dk/ctlX Common Signaling Channel device for interface X
/dev/dk/ intf.chan individual channel devices

SEE ALSO
dkdevs(1M). dkhs(7).

6-57

DKSTAT (1M) (Release 4.0) DKSTAT (1M)

DIAGNOSTICS
Any of the following error conditions may be reported by dkstat.

dkstat: Open Failed, no /dev entry for Device

An attempt was made to open Device and no /dev was found. Create the
proper /dev entry with dkdevs(1M) and try again.

dkstat: Open Failed, device Device is marked for EXCLUSIVE use

An attempt was made to open the specified device and the open was
refused because Device was marked EXCLUSIVE by dkhs(7).

dkstat: Open Failed, Interface (Device) is down

dkstat was unable to open the specified device because dkhs(7) indicated
the interface was down or out of service.

dkstat: Open Device, errno = Code

The miscellaneous error described by Code occurred when dkstat
attempted to open Device .

dkstat: Ioctl errno = Code

The error described by Code occurred when dkstat attempted to perform
the statistics gathering ioctl Ioctl .

BUGS
No provision has been made for statistics counters that wrap past zero during a
gathering interval.

6-58

DKUNLOCK (1M) (Release 4.0) DKUNLOCK (1M)

NAME
dkunlock – create CommKit Software validation record file

SYNOPSIS
dkunlock [– s certificate_number] [– k software_key]

DESCRIPTION
dkunlock is run by the software installation scripts to create the CommKit
Software validation record file necessary for using the software. This command is
not intended for use directly and administrators are urged to use the friendlier
dkregister(1M) command when unlocking their software.

The command line arguments ’– s certificate_number’ and ’– k software_key’ are
optional and dkunlock will prompt for the certificate number and/or software
key if not provided as an argument. The certificate_number and software_key are
case-insensitive but all characters, including hyphens, must be entered. Do not
run dkunlock unless you know or have immediate access to your valid software
certificate number and matching software key because the old validation record
file will be deleted and the CommKit Software will become unusable until the file is
recreated. This command does not give the administrator a second chance before
removing the existing validation record file.

EXAMPLES
To create the validation record file for

certificate number: FT40-1271941-AF8R
software key: A3222-2222-BUEH-VJUA

execute the following command:

dkunlock – s ft40-1271941-af8r – k a3222-2222-bueh-vjua

FILES
/opt/dk/sbin directory in which this command resides
/etc/opt/.DK_Key_File validation record file
/etc/opt/.DK_Coord_File message time coordination file

SEE ALSO
dkregister(1M).

DIAGNOSTICS
Exits with zero return status on success. Writes a descriptive error message to
standard error and exits with a non-zero status if any error is detected.

6-59

DK_FLUSH (3X) (Release 4.0) DK _FLUSH (3X)

NAME
dk_flush – change close processing for an AT&T data switch connection

SYNOPSIS
dk_flush(fd, flush_time)
int fd;
int flush_time;

extern int dk_verbose;

DESCRIPTION
dk_flush changes the close processing for flushing user data queued for transmis-
sion on an AT&T data switch connection. The close processing assumes the
remote endpoint is actively reading the transmitted data. The argument flush_time
controls how long the close function will wait for data to drain. flush_time can be
one of the following:

-1 wait for all of the queued user data to drain to the remote endpoint of the
AT&T data switch connection.

0 compute a time delay based on the queued user data to the remote end-
point of the AT&T data switch connection. This assumes data drains at a
rate of 10 bytes per second, equivalent to a 110 baud printer.

> 0 wait the specified number of seconds for the queued user data to drain to
the remote endpoint of the AT&T data switch connection.

The waiting for the queued user data to drain occurs when the user closes the fd,
via close(2) or exit(2). When the queued data doesn’t drain or the remote endpoint
disconnects the circuit, close(2) fails and returns an error to allow the user to deter-
mine the failure condition. This error return only occurs when dk_flush(3X) is
called. The possible return values from close(2) are:

EINTR A signal was received during close(2).

ENXIO The remote endpoint of the AT&T data switch connection terminated the
connection. The queued data may have been received by the remote end-
point before the connection was terminated. This is dependent on the
characteristics of the remote endpoint.

ETIME The requested or computed time expired, and the queued data was not
sent to the remote endpoint of the AT&T data switch connection.

In all cases the AT&T data switch connection is disconnected when close(2)
returns.

FILES
/usr/lib/libdk.so host interface subroutine library

SEE ALSO
dkhs(7), streamio(7).

6-60

DK_FLUSH (3X) (Release 4.0) DK _FLUSH (3X)

DIAGNOSTICS
A successful return is zero, while an error return is a negative number. dk_flush
prints a message on stderr when it fails, unless the external variable dk_verbose has
the value of zero(0) before the call to dk_flush(3X).

WARNINGS
A successful return from close(2) means the remote endpoint has received the data,
but doesn’t guarantee the user-application has received the data.

6-61

DK_INFO (3X) (Release 4.0) DK _INFO (3X)

NAME
dk_info – get and set information about an AT&T data switch connection

SYNOPSIS
#include <dkit/dk.h>

dk_info(fd, cmd, c_infop);
int fd;
int cmd;
dk_intfchan_t ∗c_infop;

dk_info(fd, cmd, w_infop);
int fd;
int cmd;
dk_urpwin_t ∗w_infop;

extern int dk_verbose;

DESCRIPTION
dk_info is a general-purpose routine retrieving or setting parameters of an open
host device. fd is an open file descriptor associated with a CommKit stream. cmd
is one of the following:

DKGETIC Retrieve the host interface number and data switch channel
number of the open circuit.

DKGETUW Get the maximum URP block size in bytes and maximum number
of outstanding URP blocks. It is valid only for file descriptors asso-
ciated with dkty(7) and dkhs(7) streams.

DKSETUW Set the maximum URP block size in bytes and maximum number
of outstanding URP blocks. It is valid only for file descriptors
associated with dkty(7) and dkhs(7) streams.

c_infop points to a structure of type dk_intfchan_t . This structure includes the fol-
lowing members defined as unsigned short variables:

iface; /* interface board number */
chan; /* data switch channel number */

iface is the interface board number. chan is the data switch channel number.

w_infop points to a structure of type dk_urpwin_t . This structure includes the fol-
lowing members defined as unsigned short variables:

maxblocks; /* maximum number of blocks */
maxbytes; /* maximum number of bytes */

maxblocks is the maximum number of outstanding URP blocks with the range of
values of 1 to 7. maxbytes is the maximum number of bytes in an URP block with
the range of values of 1 to 65535.

6-62

DK_INFO (3X) (Release 4.0) DK _INFO (3X)

FILES
/usr/lib/libdk.so host interface subroutine library

SEE ALSO
dkdial(3X), dkerr(3X).

DIAGNOSTICS
dk_info will return zero for a successful request and a negative number upon
error. dk_info will print an error message on standard error if the requested
action fails unless the external variable dk_verbose has been set to 0 before the call
is made.

WARNINGS
Setting the window size parameters to values greater than those established at call
setup may result in data loss. Data integrity is only guaranteed for window
parameters at or below the values established at call setup.

6-63

DK_NAMER (3X) (Release 4.0) DK _NAMER (3X)

NAME
dk_namer - convert channel number to file name

SYNOPSIS
char *dk_namer(intf, chan)

char *dk_tnamer(intf, chan)

char *dk_xnamer(intf, chan)

int intf;
int chan;

DESCRIPTION
These three routines will convert a host interface and channel number into the
UNIX System path name of the device file associated with the raw, tty, or remote
execution device.

The raw or pure URP devices are named /dev/dk/ intf .chan , the tty processing
devices are named /dev/dkt/ intf .chan , and the remote execution devices are
named /dev/dkx/ intf .chan , where intf is the interface number and chan is the chan-
nel number. The names generated by these routines may not exist but are valid for
accounting purposes. In general, the devices will exist for all incoming calls but
not for outgoing calls. It should also be noted that opening a tty processing device
does not guarantee that the tty processing modules will be on the Stream. An out-
going tty device can be selected by the dial routine [see dkdial(3X)].

FILES
/usr/lib/libdk.so host interface subroutine library

SEE ALSO
dkdial(3X).

6-64

DK_UXINFO (3X) (Release 4.0) DK _UXINFO (3X)

NAME
dk_uxinfo – get and set information about an AT&T data switch connection

SYNOPSIS
#include <dkit/dk.h>

dk_uxinfo(fd, cmd, c_uxinfop)
int fd;
int cmd;
dk_uxwin_t ∗ c_uxinfop;

extern int dk_verbose;

DESCRIPTION
dk_uxinfo is a general-purpose routine for retrieving and setting parameters of an
open host device. This routine is valid only for file descriptors associated with a
dkhs(7) stream when the dkux(7) module is pushed onto that stream. fd is an open
file descriptor associated with a CommKit stream. cmd is one of the following:

DKGET_UXW Get the maximum number of outstanding URP blocks and the log
base 2 values of the remote and local URP receive buffers.

DKSET_UXW Set the maximum number of outstanding URP blocks and the log
base 2 values of the remote and local URP receive buffers. Values
that fall outside of the implementation dependent limits will be
adjusted to the closest allowed values. Values of zero will be
replaced by the implementation dependent default values. Simi-
larly values that produce unacceptable URP windows will be
adjusted to reasonable values. In all cases the actual values used
will be returned in the space pointed to by the structure pointer.

c_uxinfop points to a structure of type dk_uxwin_t . This structure includes the fol-
lowing members defined as unsigned short variables:

nurpblks; /* number of outstanding URP blocks */
rem_rbuf; /* log2 value of remote side receive buffer */
loc_rbuf; /* log2 value of our receive buffer */

nurpblks is the maximum number of outstanding URP blocks. This value is used by
the local transmitter when it sizes the amount of data that will be transmitted in
each URP block. rem_rbuf is the log base 2 value of the receive buffer of the
remote side. It is used by the local transmitter to limit the maximum number of
bytes transmitted in an URP window. loc_rbuf is the log base 2 value of the receive
buffer of the local side. It is the value advertised in outgoing dialstrings so that a
remote transmitter can tailor its URP window.

FILES
/usr/lib/libdk.so host interface subroutine library

6-65

DK_UXINFO (3X) (Release 4.0) DK _UXINFO (3X)

SEE ALSO
dkdial(3X), dkhs(7), dkux(7), streamio(7).

DIAGNOSTICS
dk_uxinfo will return zero for a successful request and a negative number upon
error. dk_uxinfo will print an error message on standard error if the requested
action fails unless the external variable dk_verbose has been set to zero before the
call is made.

WARNINGS
This function provides access to the CommKit drivers for special applications. Its
frivolous use will effect the efficiency of data transfer and may even result in data
loss.

6-66

DKDIAL (3X) (Release 4.0) DKDIAL (3X)

NAME
dkdial – create an AT&T data switch connection to a remote destination

SYNOPSIS
#include <dkit/dk.h>
#include <dkit/sysexits.h>

dkitdial (cmd, dialp)
int cmd;
struct dkit_dial ∗dialp;

dkdial (dialstring)
char ∗dialstring;

dkndial (dialstring, intf)
char ∗dialstring;
int intf;

dktdial (dialstring)
char ∗dialstring;

dkntdial (dialstring, intf)
char ∗dialstring;
int intf;

dkgdial (dialstring, group)
char ∗dialstring;
char ∗group;

dkgtdial (dialstring, group)
char ∗dialstring;
char ∗group;

extern int dk_verbose, dk_errno;

DESCRIPTION
dkitdial obtains an available data switch channel and places a call to the destina-
tion. It is a general-purpose routine incorporating all of the dialing functions pro-
vided by dkdial, dkndial, dktdial, dkntdial, dkgdial, and dkgtdial, plus addi-
tional functionality. cmd is the command for dkitdial. The value of cmd is con-
structed by or-ing the following flags:

DK_DIAL Do a regular dial. This flag is required.

DK_SELINTF Select an interface board number.

DK_PUSHTTY Push the dkty , ldterm and ttcompat STREAM modules.

6-67

DKDIAL (3X) (Release 4.0) DKDIAL (3X)

DK_USEENV Use the environment variables, DKINTF [interface number(s)],
and DKGROUP [channel group(s)], for control information.

DK_SELGRP Use the specified group for connection information.

dialp points to the structure dkit_dial . The structure dkit_dial includes the following
members:

char *dest; /* destination string */
int intf; /* interface board number */
char *baud; /* baud rate string to be added to dialstring */

/* baud should be set to NULL if there */
/* is no baud rate string */

char *group; /* channel group name for outgoing call */

dest is the pointer to the destination string. intf is the interface board number.

The command flags operate on the following priorities:

DK_SELGRP overrides DK_SELINTF and DKUSEENV

DK_SELINTF overrides DK_USEENV

DK_USEENV flags:
DKGROUP overrides DKINTF;
DKINTF if DKINTF is not set, or set to null,

then default dialing still occurs

DK_PUSHTTY when set, DK_PUSHTTY is always done,
independent of the above variables

baud rate when the baud rate is non-null, it is used
when establishing a connection to
the specified destination

When any of the above flags are set in cmd, they specify the following:

The DK_SELGRP flag directs that the channel group chosen is taken from
group. The DK_SELINTF flag directs that the hardware interface number
chosen is taken from intf. The DK_USEENV flag directs that the hardware
interface chosen is set by the environment variable DKINTF or DKGROUP.
(See the section below on "Multiple Interfaces" for more information.) If
neither DK_SELINTF nor DK_USEENV are set, an interface with an available
channel is chosen automatically.

The DK_PUSHTTY flag directs that dkitdial automatically push the dkty, ldterm,
and ttcompat STREAMS modules in anticipation that the connection will be used
for a terminal session. The dkitdial call will fail if the dkty or ldterm STREAMS
module cannot be pushed. The call will succeed if the ttcompat STREAMS module
cannot be pushed, as its functions are generally optional.

6-68

DKDIAL (3X) (Release 4.0) DKDIAL (3X)

baud is the pointer to the baud rate string. The valid baud rate string format is
’BD=’ followed by five digits. For example, the string ’BD=09600’ is a valid string.
baud should be set to NULL except for special purpose applications.

dkdial, dkndial, dktdial, dkntdial, dkgdial and dkgtdial obtain an available data
switch channel, and place a call to the destination specified by dialstring. For
dkdial and dktdial, a specific hardware interface is chosen if the environment
variables DKINTF or DKGROUP are set. (See the section below on "Multiple Inter-
faces" for more information.) For dkgdial and dkgtdial the hardware interface
and channel are specified by the group. The interface number is taken from intf
for dkndial and dkntdial. The dktdial, dkntdial, and dkgtdial calls automatically
push the dkty, ldterm, and ttcompat STREAMS modules in anticipation that the
connection will be used for a terminal session. The routines are otherwise identi-
cal.

All calls return the file descriptor of the open circuit when the connection to the
destination has been established or a negative number if the connection cannot be
made. The dktdial, dkntdial, and dkgtdial calls fail if the dkty or ldterm
STREAMS module cannot be pushed [see I_PUSH in streamio(7)]. The calls will
succeed if the ttcompat STREAMS module cannot be pushed, as its functions are
generally optional.

The circuit is cleared automatically when the last open file descriptor associated
with this channel is closed.

MULTIPLE INTERFACES
The CommKit Host Interface software supports multiple interface boards, allowing
connectivity to multiple data switch networks or redundant connectivity to a sin-
gle network. The use of multiple interfaces may be controlled by choosing the dial
function and its options in conjunction with the environment variables DKINTF
and DKGROUP . The following commands: dk(1C), dkcat(1C), dkcu(1C), dkdo(1C),
dkload(1M), pull(1C), and push(1C) all initiate connections through the network
and use the default interface processing to make connections. The default process-
ing and its exceptions are described below.

Default Processing
The default processing will alternate the outgoing connections through
every active interface board unless one of the environment variables,
DKINTF or DKGROUP is set (i.e., the interfaces are selected in a round robin
fashion starting with interface 0 and progressing through the highest con-
figured interface.) If DKINTF is set, then its value will be used as the
interface(s) for the outgoing call. If DKGROUP is set, then its value will be
used to select the interface(s) and channel(s) for the outgoing call.

DKINTF can be a comma-separated list of interfaces. The dial-out attempts
are made in the order defined in the list, until the call is successful or the
end of the list is reached. This syntax allows lists in which one interface is
preferred over others. For example, ’DKINTF=0,0,1’ will dial over inter-
face 0 twice before dialing over interface 1.

6-69

DKDIAL (3X) (Release 4.0) DKDIAL (3X)

DKGROUP is the name of an entry in the dkgroups file.

dkitdial() If the DK_SELINTF flag is set, then the interface number supplied in
the dkit_dial structure is used. If the DK_SELINTF and DK_USEENV
flags are not set, the default processing is used.

dkdial() The default processing is always used.

dkndial() The supplied interface argument is always used, the default process-
ing is never used.

dkgdial() The supplied group is always used.

dkgtdial() The supplied group is always used.

dktdial() The default processing is always used.

dkntdial() The supplied interface argument is always used; the default process-
ing is never used.

Caveats
As stated above, the commands that initiate connections through the network will,
unless DKINTF or DKGROUP is set, alternate the outgoing connections through
every active interface board. If the interfaces reside in different data switch Ori-
ginating Groups, an authorization [see authorize(1M)] made from one interface will
not be valid for calls established through one of the other interfaces. Users must
explicitly authorize through each interface or must restrict their connections to a
single outgoing interface. See the dkauth(1C) manual page for more information.

FILES
/usr/lib/libdk.so host interface subroutine library
/dev/dk/dial default dialer device
/dev/dk/dialX dialer device for interface X
/etc/opt/dk/dkgroups channel group control file

SEE ALSO
dkauth(1C), authorize(1M), dkmaint(1M), dkerr(3X), dkgroups(4), dkty(7).
close(2), open(2), getenv(3), ldterm(7), streamio(7), ttcompat(7) in the UNIX System V
System Administrator’s Reference Manual.

DIAGNOSTICS
All calls return a negative number on an error. Unless the external variable
dk_verbose had been set to zero, all calls print an error message on standard error
when the call fails.

If the failure of these routines is caused by a system call, a value of ’-1’ is returned
and the external variable errno contains the actual error code. Otherwise, the abso-
lute value of the negative number returned is an error code found in
<dkit/sysexits.h>.

Further details about the reason for the call failure is stored in the external vari-
able dk_errno. See dkerr(3X) for additional information regarding dk_errno.

6-70

DKDIAL (3X) (Release 4.0) DKDIAL (3X)

BUGS
If the destination is a TY connected device, it is advised to wait one or two
seconds after the return of this routine and before writing data to the channel to
avoid data loss.

6-71

DKEPOINT (3X) (Release 4.0) DKEPOINT (3X)

NAME
dkgetepoint, dksetepoint – AT&T data switch endpoint type detection routines

SYNOPSIS
#include <dkit/dk_unixp.h>

int dkgetepoint(fd, ep_type)
int fd;
char *ep_type;

int dksetepoint(fd, ep_type)
int fd;
char *ep_type;

DESCRIPTION
The host interface subroutine library contains two routines that permit applica-
tions to program and retrieve an endpoint type code for incoming circuit connec-
tions when using the dkhs(7) driver. Homogeneous Datakit II VCS networks sup-
ply endpoint type identification in the dialstring allowing dkserver(1M) to program
the endpoint type with dksetepoint() for every incoming call. The endpoint type
is set to DKepUNKNOWN when connections originate from a Datakit VCS
region of the network or when the host is connected to a Datakit VCS node. All
endpoint type #define constants are kept in the header file
/usr/include/dkit/dk_unixp.h.

dkgetepoint() retrieves the endpoint type code from the circuit associated with fd
and stores the single character at the location addressed by ep_type . The return
value is non-zero for success and zero for failure. The value of ep_type is unde-
fined on an error return.

dksetepoint() sets the endpoint type code for the circuit associated with fd to the
single character value found at address ep_type . The return value is non-zero for
success and zero for failure.

EXAMPLE
The code fragments below illustrate how to retrieve and print the endpoint type
code for the circuit associated with fd:

#include <dkit/dk_unixp.h>

char ep_type;
int ret;

ret = dkgetepoint(fd, &ep_type);
if (ret != 0)

printf("Endpoint type is ’%c’\n", ep_type);

6-72

DKEPOINT (3X) (Release 4.0) DKEPOINT (3X)

FILES
/usr/include/dkit/dk_unixp.h endpoint type definitions
/usr/lib/libdk.so host interface subroutine library

SEE ALSO
dkserver(1M).

6-73

DKERR (3X) (Release 4.0) DKERR (3X)

NAME
dkerr – generate standard AT&T data switch error message

SYNOPSIS
#include <dkit/dk.h>

char *dkerr(error)
int error;

DESCRIPTION
dkerr takes an error number returned from a call setup attempt and returns a stan-
dard error string. The error number is stored in the external variable dk_errno by all
of the dkdial(3X) routines. The following is a list of the error numbers and their
names as defined in <dkit/dk_unixp.h>. The header file <dkit/dk_unixp.h> is
included by the header file <dkit/dk.h> .

0 SYS Call Failed

Unknown data switch control computer or remote host error.

1 EdBUSY All channels busy

All assigned ports/channels are in use. All assigned ports/channels are
marked as not available by the remote host (this can be caused by the host
being down).

2 EdDEADNODE Remote node not answering

A connection cannot be completed because a data switch trunk or data
switch control computer somewhere in the network path is inoperable.

3 EdNOANSWER Server not answering

The requested server name is not in service. No interface hardware is
assigned to the requested name. The interface hardware assigned to the
requested name is not in service or is not operational. The remote server
may not answer for reasons of its own. See dkserver(1M).

4 EdNONASS Destination not recognized

Some part of the requested name is not defined in the network. The net-
work does not allow this host to have access to the requested name. The
requested name is not well formed (too many slashes).

5 EdREORDER All trunk channels busy

One of the data switch control computers has run out of some resource
and is unable to process the call at this time.

6-74

DKERR (3X) (Release 4.0) DKERR (3X)

6 EdEXIST Server already exists

The host attempted to set up a data switch server, but the data switch con-
trol computer thinks that there already is a server by that name.

7 EdNOACC Access denied

The call was denied by the remote server. See dkserver(1M). This error can
also occur if this host attempted to set up a data switch server, but the data
switch control computer is not prepared to accept such a setup from this
host. This can be caused by: 1) the server name is not defined in the data-
base, 2) the name is not assigned to a group, or 3) the group is not assigned
to the CPM-HS module that is connected to this host.

8 EdDIRASS Directory Assistance

The user has requested directory assistance.

10 EdTOOLONG Address too long

The length of the dialstring was larger than the network maximum.

11 EdDIALER Dialer Error

This error has been replaced by errors 22 through 29 below.

12 EdROUTERR Network routing error

The network encountered a routing error.

13 EdTIMOUT Network congestion -- Call timeout. Try again.

The network is congested; the call setup timed out while waiting for a
response from some remote entity.

14 EdCONBRK Connection broken. Try again later.

The connection has been broken. This usually happens when some net-
work facility is abruptly removed from service.

15 EdSMGERR Network congestion -- Call initiation failure. Try again.

A call attempt failed due to some lack of resources on the network.

16 EdCHALER Network congestion -- Channel allocation error. Try again later.

A call attempt failed due to a lack of control channel resources on the net-
work.

6-75

DKERR (3X) (Release 4.0) DKERR (3X)

17 EdCONERR Network congestion -- Connection error. Try again later.

A call attempt failed because the command to set up the virtual circuit
failed.

18 EdFWDCER Network congestion -- Call forward error. Try again later.

A call attempt failed due to some lack of resources needed by a trunk to a
remote endpoint.

19 EdCOLTRK Network congestion -- Trunk call collision. Try again.

A call attempt failed because the trunk channel picked for the outgoing call
was also picked by the remote side for an incoming call. The other side
won this one.

20 EdCFGTER Trunk configuration mismatch. Call Network Administrator.

A call attempt failed because the trunk channel picked for the outgoing call
is not configured on the trunk on the remote end.

21 EdCFGHER Host configuration mismatch. Call Network Administrator.

A call attempt failed because the host channel picked for the outgoing call
is not configured on the network.

The following errors come from the new autodialer.

22 EdDIALNEEDNUM Invalid or missing phone number

The user has neglected to type the phone number required to make a
phone call as in dial.< valid-phone-number >. The phone number is
synonymous with the dialstring.

23 EdDIALREORT Call did not go through. Try again later.

The dialer could not complete the call.

24 EdDIALNOIDT No initial dial tone. Try again later.

The autodialer on the called port possibly has a bad telephone line. The
port has been marked as bad and removed from the autodialer hunt
group.

25 EdDIALNOSDT No secondary dial tone. Try again later.

The autodialer was signaled to wait for a secondary dial tone in the dialing
sequence and no such dial tone was detected.

6-76

DKERR (3X) (Release 4.0) DKERR (3X)

26 EdDIALBUSY Dialed number busy

The call was successfully dialed and a busy signal was detected by the
autodialer.

27 EdDIALNOANS No answer from dialed number

The call was dialed successfully and the autodialer didn’t get an answer
from the dialed number.

28 EdDIALNOCT No carrier tone

The call was dialed successfully and answered; however, no carrier tone
was detected by the autodialer.

29 EdDIALBADBAUD Unsupported baud rate

The requested baud rate is not supported by the dialer.

The following errors come from the SIM.

30 EdSIMBUSY SIM all channels busy

All assigned ports/channels on the SIM are in use.

31 EdSIMNOACC SIM no access

The call was denied by the remote side.

32 EdSIMFAIL SIM bad contact

Some failure was encountered while contacting SIM.

33 EdSIMNAK SIM no contact

The SIM rejected the call.

34 EdFACILERR Facility not subscribed

The facility on the SIM was not subscribed to.

35 EdSVCTYPERR Service mismatch

The service on the SIM did not match the request.

36 EdHOSTPROTERR Host protocol error

37 EdXWINBIG Transmit window too big

6-77

DKERR (3X) (Release 4.0) DKERR (3X)

38 EdRWINSMALL Receive window too small

39 EdCOPENER Open channel error

40 EdURPER Urp error

41 EdCVTVLPER Vlp to dial error

42 EdDSTOOLONG Dialstring too long

43 EdCVTDSER Dial to vlp error

44 EdTRKBUSY Trunk busy

45 EdHOPCNTER Hop count exceeded

46 EdTRKOOS Trunk not answering

47 EdNODIAG No diagnostic channel

48 EdDIFFGOS Mismatched GOS endpoints

The originating and receiving endpoints of a call have the grade of service
(GOS) configured differently.

49 EdMOD_NOCIR Insufficient CIR at module

The module receiving the call does not have sufficient resources to support
the requested committed information rate (CIR).

The following messages result from a disconnected call.

50 hupEPOINT Endpoint hung up

The endpoint hung up the call. This is not an error.

51 hupNETWORK Network hung up

The network hung up the call.

52 hupSPLICE Splice completed

53 hupSPLICE_FAIL Splice failed

The following errors come from dkserver(1M).

130 EdDEVBAD Dkserver: Can’t open line. Call System Administrator

The call could not be completed because the host server could not open the
host device to make the call.

6-78

DKERR (3X) (Release 4.0) DKERR (3X)

131 EdMODPUSH Dkserver: Can’t push your streams modules

The configured STREAMS modules could not be pushed onto the open
channel.

132 EdBADPROTO Dkserver: Invalid protocol requested

The host does not recognize the data switch control computer protocol.

133 EdNOSRVTAB Dkserver: Srvtab not readable. Call System Administrator

The call could not be completed because the host server table (located in
/etc/opt/dk/srvtab) on the remote host was unreadable.

134 EdBADCHROOT Dkserver: Can’t chroot. Call System Administrator

The call could not be completed because the host server could not change
root to the home directory of the caller on the remote machine.

135 EdOPTION Dkserver: Can’t set/get circuit parameters. Call System Adminis-
trator

The call could not be completed because the remote dkserver(1M) failed to
either set the originator’s receive buffer size and URP initialization code, or
it failed to get the receive buffer size for the receiving channel.

136 EdNOTIDLE Dkserver: Call on a busy device or call collision, try again

The call could not be completed because the remote data switch server
detected that the device was not idle. This results from a busy device or
from a call collision on the remote host. This is a temporary load related
condition.

The following error is returned by the library function.

150 EdBADPARAM Bad parameter

A dkdial(3X) routine was called with an invalid parameter.

The following errors come from the old autodialer.

267 Please supply a valid phone number

The user has neglected to type the phone number required to make a
phone call as in dial.< valid-phone-number >. The phone number is
synonymous with the dialstring.

523 No response from autodialer. Try again.

The autodialer on the called port failed to respond. The port has been
marked as bad and removed from the autodialer hunt group.

6-79

DKERR (3X) (Release 4.0) DKERR (3X)

779 Auto dialer failed to initiate call. Try again.

The autodialer on the called port responded but failed during dialing. If
this message appears more than twice in succession, contact the data
switch Network Administrator.

1035 No initial dial tone detected

The autodialer on the called port possibly has a bad telephone line. The
port has been marked as bad and removed from the autodialer hunt
group.

1291 No secondary dial tone detected

The autodialer was signaled to wait for a secondary dial tone in the dialing
sequence and no such dial tone was detected.

1547 Dialed number is busy

The call was successfully dialed and a busy signal was detected by the
autodialer.

1803 No answer from dialed number

The call was dialed successfully and the autodialer didn’t get an answer
from the dialed number.

2059 No carrier tone was detected

The call was dialed successfully and answered, however, no carrier tone
was detected by the autodialer.

2315 Could not complete your call. Try again.

The call could not be completed for the following possible reasons: 1) the
autodialer failed to complete the dialing sequence, or 2) the port connected
to the autodialer was removed from service during the call.

2571 Unsupported baud rate

The requested baud rate is not supported by the dialer.

FILES
/usr/lib/libdk.so host interface subroutine library

SEE ALSO
dkserver(1M), dkdial(3X), srvtab(4).
ioctl(2) in the UNIX System V Programmer’s Reference Manual.

6-80

DKGOS (3X) (Release 4.0) DKGOS (3X)

NAME
dkget_goslevel, dkset_goslevel – get and set transmit GOS level for an AT&T data
switch connection

SYNOPSIS
#include <dkit/dk.h>
#include <dkit/rdfp.h>

int dkget_goslevel(fd, goslevel)
int fd;
int *goslevel;

int dkset_goslevel(fd, goslevel)
int fd;
int *goslevel;

DESCRIPTION
The host interface subroutine library contains two routines that permit applica-
tions to modify the transmit GOS level for circuit connections when using the
dkhs(7) driver. The default transmission mode is GOS5 which provides flow con-
trol and error correction via retransmission. GOS4 provides flow control, but no
error correction. GOS3 does not provide either flow control or error correction.
All GOS changes were made in accordance with the Universal Receiver Protocol
(URP) Internal Interface Specification Issue 2, December 1991 (700-283). The
transmission mode should ONLY be modified when the effect on both the applica-
tion and network is fully known.

dkget_goslevel() retrieves the transmit GOS level from the circuit associated with
fd and stores the integer value at the location addressed by goslevel. The return
value is non-zero for success and zero for failure. The value of goslevel is unde-
fined on an error return.

dkset_goslevel() sets the transmit GOS level for the circuit associated with fd to
the integer value found at address goslevel. The goslevel value must be one of the
following: GOS3, GOS4, or GOS5, as defined in /usr/include/dkit/dk.h. The return
value is non-zero for success and zero for failure.

EXAMPLE
The code fragment below illustrates how to retrieve and print the GOS level for
the circuit associated with fd:

#include <dkit/dk.h>
#include <dkit/rdfp.h>

int goslevel;
int ret;

ret = dkget_goslevel(fd, &goslevel);
if (ret != 0)

printf("GOS level is ’%d’\n", goslevel);

6-81

DKGOS (3X) (Release 4.0) DKGOS (3X)

FILES
/usr/include/dkit/dk.h supported transmit GOS level definitions
/usr/lib/libdk.so host interface subroutine library

SEE ALSO
Universal Receiver Protocol (URP) Internal Interface Specification Issue 2, December
1991.

6-82

DKLEVELD (3X) (Release 4.0) DKLEVELD (3X)

NAME
dkleveld, dkeof, dkbreak, dkusb, isdkleveld, isdkeof, isdkclosed – data switch
Level– D and unsequenced data support routines

SYNOPSIS
#include <sys/types.h>
#include <dkit/rdfp.h>
#include <dkit/dk_urp.h>

int dkleveld(fd, msg, len)
int fd;
dk_lvld_t *msg;
int len;

int dkeof(fd)
int fd;

int dkbreak(fd)
int fd;

int dkusb(fd, byte1, byte2)
int fd;
uchar_t byte1;
uchar_t byte2;

int isdkleveld(fd)
int fd;

int isdkeof(fd)
int fd;

int isdkclosed(fd)
int fd;

DESCRIPTION
The host interface subroutine library contains a number of routines to support the
use of AT&T data switch URP Level– D control codes and the transmission of
unsequenced data. These routines are used internally by the host interface admin-
istrative and applications programs.

dkleveld transmits a msg of arbitrary len containing mixed URP Level– D control
codes and data on the circuit associated with fd . The mixed control and data mes-
sage is scheduled for transmission after any data already queued for the circuit.
msg should point to an array of dk_lvld_t objects containing the mixed control
and data, and len is expected to be the length of the array in bytes. Each data item
in the array must be made with the dkDmkdata() macro and each control code item
must be made with dkDmkctl(). The length of msg may not exceed the system limit
for control messages. A non-zero value is returned on successful completion.

6-83

DKLEVELD (3X) (Release 4.0) DKLEVELD (3X)

dkeof transmits a URP Level– D EOFcontrol code on the circuit associated with fd
by making an internal call to dkleveld. The EOF control code is scheduled for
transmission in a separate URP block after any data already queued for the circuit.
A non-zero value is returned on successful completion.

dkbreak transmits a URP Level– D BREAKcontrol code on the circuit associated
with fd by making an internal call to dkleveld. The BREAK control code is
scheduled for transmission in a separate URP block after any data already queued
for the circuit. A non-zero value is returned on successful completion.

dkusb transmits two bytes of unsequenced data on the circuit associated with fd.
The unsequenced data is scheduled for the next transmission opportunity on the
circuit, bypassing any data already queued for the circuit. A non-zero value is
returned on successful completion.

isdkleveld tests whether the top message at the Stream-head associated with fd
contains a URP Level– D control code message. If an M_PROTO message contain-
ing a URP Level– D control code is found, the control code is returned. Zero is
returned if there is no message at the Stream-head or if the message does not con-
tain a URP Level– D code.

isdkeof tests whether the top message at the Stream-head associated with fd con-
tains a URP Level– D control code message with an EOF code value. If an
M_PROTO message containing a URP Level– D control code is found and the con-
trol code is an EOFcode, a non-zero value is returned. Zero is returned if there is
no message at the Stream-head or if the message does not contain a URP Level– D
EOFcode.

isdkclosed tests whether the circuit associated with fd has been disconnected. A
non-zero value is returned if the circuit has been disconnected and a zero value is
returned if the circuit appears to be still active.

EXAMPLE
The code fragments below illustrate how to use the dkleveld routine to transmit
the string ’abc’ sandwiched between URP Level-D BREAKcontrol codes on the
circuit associated with fd:

#include <sys/types.h>
#include <dkit/rdfp.h>
#include <dkit/dk_urp.h>

dk_lvld_t msg[] = {
dkDmkctl(URPdBREAK),
dkDmkdata(’a’),
dkDmkdata(’b’),
dkDmkdata(’c’),
dkDmkctl(URPdBREAK)

};

ret = dkleveld(fd, msg, sizeof(msg));

6-84

DKLEVELD (3X) (Release 4.0) DKLEVELD (3X)

FILES
/usr/lib/libdk.so host interface subroutine library

SEE ALSO
dkhs(7), streamio(7).

WARNINGS
If a bad Level-D control code is specified, no error will be returned but subsequent
use of the file descriptor may result in errors. This will happen because an
M_ERROR is returned which makes all system calls, except close() and poll(), FAIL.

6-85

DKMGR (3X) (Release 4.0) DKMGR (3X)

NAME
dkmgr – establish an AT&T data switch server

SYNOPSIS
#include <stdio.h>
#include <dkit/dk.h>
#include <dkit/dkmgr.h>

struct mgrmsg *dkmgr(srvname)
char * srvname;

struct mgrmsg *dknmgr(srvname, intf)
char * srvname;
int intf;

struct mgrmsg *dknnmgr(srvname, intf, srvchan)
char * srvname;
int intf, srvchan;

void dkmgrack(chan, windowsz)
int chan;
short windowsz;

void dkmgrnak(chan, error, windowsz)
int chan, error;
short windowsz;

int dkinit(fd, mode)
int fd, mode;

int dkcktcfg(srvfd, chan, windowsize, protocol)
int srvfd, chan;
short windowsize, protocol;

int dk_chk_idle(intf, chan)
int intf, chan;

int dk_reset_ckt(intf, chan)
int intf, chan;

extern FILE *logf;
extern int loglvl;
extern short recv_win;
extern short nurpblks;
extern short dk_protocol;
extern int dksrvfd;
extern int dksrvfatal;
extern struct stat *ctl_stat;

6-86

DKMGR (3X) (Release 4.0) DKMGR (3X)

DESCRIPTION
This set of functions and external variables may be used to establish services on an
AT&T Data Switch, receive call requests, initialize and configure circuits, and
accept or reject the call request. A program that calls these functions requires some
initialization as well as knowledge of the external variables. See the section
EXTERN VARIABLES below.

dkmgr , dknmgr and dknnmgr set up the calling process as a data switch server
named srvname and receive call setup requests. The hardware interface chosen is
zero for dkmgr and intf for dknmgr and dknnmgr . The hardware channel chosen
is the lowest free channel for dkmgr and dknmgr and srvchan for dknnmgr .
These routines return a pointer to an incoming service request of the following
format:

struct mgrmsg {
short m_chan; /* channel number of connection */
unsigned short m_tstamp; /* time stamp of request */
short m_urp; /* how to initialize URP */
short m_windowsize; /* log value of call originator’s

* receive buffer size */
char * m_protocol; /* protocol options from user */
char * m_origtype; /* type of originating device */
char * m_parm; /* parameter string from user */
char * m_uid; /* param from system/user, aka UID */
char * m_dial; /* dial string entered */
char * m_source; /* originator as known to remote node */
char * m_lname; /* originator as known to local node */
char * m_service; /* service type requested by user */
char * m_baudrate; /* baud rate of originator */
char * m_lflag; /* L == call from local node,

* R == call from a remote one. */
char * m_srcnode; /* originating node (last segment) */
char * m_srcmod; /* originating mod */
char * m_srcchan; /* originating channel */
char * m_cflag; /* call flag: F=first, P=previous */
char * m_errmsg; /* possible error msg if m_chan <= 0 */
char * m_modtype; /* mod. type: field one of fifth line */

} ;

Field m_chan gives the channel number assigned to the incoming request. This
channel number is associated with the CommKit device name returned by
dk_namer(3X). The data switch circuit is already established but the device needs
to be opened, initialized and configured. Field m_tstamp gives the time stamp of
the request. Field m_urp indicates how the host interface should initialize URP.
Field m_windowsize is the log value of the call originator’s receive buffer size.
Field m_protocol gives the protocol options from the user dialstring. Field
m_origtype is reserved for a subparameter of the protocol field. Field m_parm con-
tains the parameters from the user dialstring. String m_uid is a sequence of char-
acters extracted from the call setup request message. It may contain optional sub-
fields separated by "." or "/" characters. This field may represent an octal user ID

6-87

DKMGR (3X) (Release 4.0) DKMGR (3X)

(if the first character is zero), a decimal user ID (if entirely numeric), or a character
login.

The string m_dial gives the dialstring used by the calling process. The string
m_source is the group name (area/exch/group) of the port in the network where
the call originated. String m_lname is the trunk, (data switch group name), as
known to the local node. The requested service appears in m_service. Fields
m_srcnode , m_srcmod , and m_srcchan are the originating node, module and chan-
nel, respectively. Fields m_srcmod and m_srcchan are in decimal.

Field m_cflag is the call flag indicating whether this is the first call from this host or
if there have been previous calls from this host. String m_errmsg gives a text error
message which is valid only if the returned m_chan is less than or equal to zero.
Field m_modtype gives the module type information which is intended to be used
internally by the network.

The server program must set the URP initialization mode for the requested chan-
nel by calling dkinit . The dkinit function is passed two parameters: fd is the open
file descriptor of the device and mode the URP initialization instructions. mode
should be the m_urp value returned in the mgrmsg structure but may be any com-
bination of the bitwise OR of zero, DKXINIT or DKRINIT. dkinit returns a non-
negative value on success. Otherwise, a value of -1 is returned and the external
variable errno is set to indicate the error.

The server program must also configure the device via a call to dkcktcfg . This
function sets the device to the active state and passes the URP window size to the
transmitter. This function uses the open file descriptor srvfd of the server channel,
found in the external variable dksrvfd . The channel chan and window size win-
dowsize are taken from call request structure members m_chan and m_windowsize
respectively. The protocol is the protocol value from the dk_protocol external vari-
able. dkcktfg returns a non-negative value on success. Otherwise, a value of -1 is
returned and the external variable errno is set to indicate the error.

The server program is also expected to call either dkmgrack or dkmgrnak to com-
plete the call. The first acknowledges and accepts the call, the second rejects the
call. The first argument for both is chan the channel number from the call request.
The second argument to dkmgrack is windowsz , it is the window size that is
returned to the calling endpoint. Its value is found in the external variable
recv_win . The second argument to dkmgrnak is the error code giving the reason
the call was rejected. The third argument is the window size that is returned to the
calling endpoint. Its value is found in the external variable recv_win .

The server program may also make use of the dk_chk_idle function to see if the
device specified by intf and chan is idle and not in use. This check is made via the
common signaling channel and returns zero (EX_OK) if the channel is idle and
EX_UNAVAILABLE if it is not. For obvious reasons, the program should not have
the requested channel open when this check is made. If the circuit is not idle the
server can attempt to force it into the idle state by calling dk_reset_ckt to reset the
device, specifying intf and chan . This function also returns zero (EX_OK) if the
request was accepted and EX_UNAVAILABLE if it is not. Both functions will
return EX_OSFILE or EX_NOPERM if there are problems opening or accessing the

6-88

DKMGR (3X) (Release 4.0) DKMGR (3X)

common signaling channel. There is no guarantee that the circuit will be returned
to the idle state, but it will be rendered unusable until any processes that have the
device open, close(2) it.

EXAMPLE
The code fragments below illustrate how to use dkmgr(3X) routines to create a
server, receive and accept incoming calls.

#include <stdio.h>
#include <dkit/dk.h>
#include <dkit/dkmgr.h>

char cktname[], srvname[];
int child, errcode, fd, infc, retval;
struct mgrmsg *inmsgp;

extern short dk_protocol, recv_win;
.
.
.

while(1) {
inmsgp = dknmgr(srvname, infc);

if (inmsgp->m_chan <= 0) {
error handling;
continue;

}
/* Got an incoming call - validate it */
retval = validate(inmsgp);
if (retval < 0) {

error handling;
continue;

}
child = fork();
if (child==0)

/* Child process breaks out of while() loop */
break;

/* Parent stays in while loop to wait for incoming calls */
}

/* This code is executed by the child process */

/* Get the dk circuit device name */
cktname = dk_namer(infc, inmsgp->m_chan);

/*
Check that dk circuit is idle before attempting open.
This call will fail if not executing as ’root’.
*/
retval = dk_chk_idle(infc, inmsgp->m_chan);

6-89

DKMGR (3X) (Release 4.0) DKMGR (3X)

if (retval != EX_OK) {
/* You can either do error handling OR ... */
errcode = <value indicative of this error>;
dkmgrnak(inmsgp->m_chan,errcode,recv_win);
error handling;
exit;

/* ... try to reset the dk circuit */
retval = dk_reset_ckt(infc,inmsgp->m_chan);
if (retval != EX_OK) {

errcode = <value indicative of this error>;
dkmgrnak(inmsgp->m_chan,errcode,recv_win);
error handling;
exit;

}
/*
Check that dk circuit is idle after reset
*/
for (i=0; i < TOO_MANY; ++i){ /* programmer defines TOO_MANY */

if (dk_chk_idle(infc, inmsgp->m_chan) == EX_OK)
break;

sleep(1); /* delay before checking again */
}
if (i==TOO_MANY) {

/* The channel is still not idle */
errcode = <value indicative of this error>;
dkmgrnak(inmsgp->m_chan,errcode,recv_win);
error handling;
exit;

}
}

/*
If we got here, the dk circuit should be available:
either because it was idle or because it was reset.
*/
fd = open(cktname, O_RDWR);
if (fd < 0) {

errcode = <value indicative of this error>;
dkmgrnak(inmsgp->m_chan,errcode,recv_win);

error handling;
exit;

}
/* dk circuit has been opened and can be initialized */
retval = dkinit(fd, inmsgp->m_urp);
if (retval < 0) {

close(fd);
errcode = <value indicative of this error>;
dkmgrnak(inmsgp->m_chan,errcode,recv_win);

6-90

DKMGR (3X) (Release 4.0) DKMGR (3X)

error handling;
exit;

}

retval = dkcktcfg(dksrvfd, inmsgp->m_chan,
inmsgp->m_windowsize, dk_protocol);

if (retval < 0) {
close(fd);
errcode = <value indicative of this error>;
dkmgrnak(inmsgp->m_chan,errcode,recv_win);
error handling;
exit;

}

dkmgrack(inmsgp->m_chan, recv_win);
/* dk circuit is ready for use; you can now read(fd) and write(fd). */
exec(application);

.

.

.

EXTERN VARIABLES
Several external variables are set by calling dkmgr , dknmgr or dknnmgr and
should not be changed. These variables are:

dksrvfd − the file descriptor of the server channel.

recv_win − the receiver window size for this host.

nurpblks − the number of allowable outstanding URP blocks for this host.

dk_protocol − the call set-up protocol of the AT&T data dwitch.

dksrvfatal − an indication that the requested service name was rejected by the
data switch because it is already running or because the name is
unknown or out of service.

One external variable is initialized to a default value and may be changed as
needed.

loglvl − the log level of the messages written to the log file. The initial value of
the variable is 6.

There are two external variables that must be set by the calling program or they
will not be used. They are:

logf − the return value of an fopen(3) library call of the file that will be used as
the log file.

ctl_stat − a pointer to a stat structure that was passed to the stat(2) system call
for the common channel device. The interface number of the com-
mon channel device must match the interface number of the server.

6-91

DKMGR (3X) (Release 4.0) DKMGR (3X)

FILES
/usr/lib/libdk.so host interface subroutine library
/dev/dk/dial default dialer device
/dev/dk/dialX dialer device for interface X
/dev/dk/ctlX Common Signaling Channel device for interface X

SEE ALSO
dkdial(3X), dk_namer(3X).
stat(2) and fopen(3C) in the AT&T UNIX System V Programmer’s Reference Manual.

DIAGNOSTICS
In case of a call setup error or a data switch controller restart, a message is format-
ted, a pointer to the message is placed in m_errmsg , m_chan is set to be less than or
equal to zero, and a normal return is done.

6-92

DKSPLICE (3X) (Release 4.0) DKSPLICE (3X)

NAME
dksplice – splice two AT&T data switch connections together

SYNOPSIS
#include <dkit/sysexits.h>

int dksplice(fdout, fdin);
int fdout;
int fdin;

DESCRIPTION
dksplice arranges for two data switch circuits to be connected together. The splic-
ing process must have a valid file descriptor for each circuit and both circuits must
be on the same host interface. The two file descriptors fdout and fdin are passed as
arguments to dksplice. Normally, fdout corresponds to an outgoing call made ear-
lier using dkdial(3X); while fdin corresponds to an incoming tty call from a data
switch. However, any two data switch channels owned by the process may be
spliced. Extreme care should be used under these circumstances and the user is
responsible for ensuring that the endpoints of the splice are compatible and that a
termination protocol is agreed on.

After the splice takes place, the system automatically arranges for the new data
switch circuit to initialize its URP receivers and transmitters.

When the splice successfully completes, dksplice closes both fdin and fdout before
returning. Since these circuits are now unusable, the user must also close any
dup(2) copies of them. For example, in the case where one of the spliced circuits
was used for login, standard output and standard error must be closed since they
are duplicated from standard input.

FILES
/usr/lib/libdk.so host interface subroutine library

SEE ALSO
dkdaemon(1M), dkdial(3X), dksplwait(3X), dkhs(7), dkux(7).
dup(2), ioctl(2) in the AT&T UNIX System V Programmer’s Reference Manual.

DIAGNOSTICS
When dksplice fails, it returns a negative value to the user and sets errno, but it
does not close the file descriptors fdin or fdout . Any STREAMS modules that were
pushed on the Stream before the call to dksplice will no longer be on the Stream
after dksplice returns. Hence, if a user wishes to use the two circuits after
dksplice has failed, the user must reconfigure the circuits.

If you are expecting to recover from failed dksplice calls, it is recommended that
you save your terminal settings prior to the dksplice call. Upon return from a
failed splice, you can then push the required modules (dkty, ldterm, ttcompat,
etc.) and reset your terminal settings.

6-93

DKSPLICE (3X) (Release 4.0) DKSPLICE (3X)

The return codes and [errno] settings are described below.

EX_OSFILE: dksplice was unable to push dkux(7) onto one of the
Streams associated with fdin or fdout .

EX_DATAERR: dksplice does not recognize one or both of fdin or fdout as a
Stream associated with a data switch circuit. This error can
also occur when multiple host interfaces are installed, and
fdin and fdout are not associated with the same physical
interface.

EX_UNAVAILABLE: The DKSPLICEPREP ioctl(2) failed for one of the following
reasons:

[EINVAL] The data structure associated with the
DKSPLICEPREP ioctl(2) was not found or
was not of the proper size, the channels
specified in the DKSPLICEPREP ioctl(2)
data structure are not owned by the user, or
the user asked to splice two file descriptors
which correspond to the same channel.

[ENOENT] The Common Signaling Channel has not been
configured by the daemon process,
dkdaemon(1M), and thus the interface is
down.

[ENODEV] One or both of the channels to be spliced
are not open circuits.

[EIO] A software error of unknown cause has
occurred.

[ENOSPC] The dkux(7) STREAMS module was unable
to set up the splice request because of lack
of buffers.

EX_SOFTWARE: The DKSPLICE ioctl(2) failed for one of the following rea-
sons:

[EINVAL] The data structure associated with the
DKSPLICE ioctl(2) was not found or was
not of the proper size. This errno value also
occurs when the user asked to splice two
file descriptors which correspond to the
same channel.

[ENOENT] The Common Signaling Channel has not been
configured by the daemon process,
dkdaemon(1M), and thus the interface is
down.

6-94

DKSPLICE (3X) (Release 4.0) DKSPLICE (3X)

[ENODEV] One or both of the channels to be spliced
are not open circuits.

[EIO] A software error of unknown cause has
occurred.

[ENOSPC] The dkux(7) STREAMS module was unable
to set up the splice request because of lack
of buffers.

[ENOMEM] Circuits involved in the ioctl(2) call are not
in the proper state.

6-95

DKSPLWAIT (3X) (Release 4.0) DKSPLWAIT (3X)

NAME
dksplwait – wait for an AT&T data switch circuit to be reconnected

SYNOPSIS
int dksplwait(fd);
int fd;

extern int dk_splwtime;

DESCRIPTION
dksplwait allows the target of a splice to wait for the splice to complete. The fd
argument indicates the circuit to be waited on.

Normally the following actions are taken to maintain synchronization in a splicing
scenario:

CALL ORIGINATOR SPLICING HOST TARGET HOST

Makes call to
splice application.

Makes call to target
via dkdial(3x).
Waits on read.

Writes to splicing
host. Waits for
splice to complete
with dksplwait.

Splices circuits
with dksplice(3X).
Exits.

Continues Continues
conversation conversation with
with target. call originator.

dksplwait will return immediately if the reconnection has already taken place.

The parameter, dk_splwtime , if set to a positive integer by the user, causes
dksplwait to time out after the specified number of seconds. Setting dk_splwtime
to -1 will cause dksplwait to wait indefinitely for the splice to complete. By
default, dk_splwtime is set to -1. It is recommended that dk_splwtime be used to
guarantee recovery from the error case where, for some reason, the splice does not
take place.

6-96

DKSPLWAIT (3X) (Release 4.0) DKSPLWAIT (3X)

FILES
/usr/lib/libdk.so host interface subroutine library

SEE ALSO
dksplice(3X), dkhs(7), dkux(7).

DIAGNOSTICS
On successful completion, a value of zero is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error. An errno value of EINVAL indicates
that dk_splwtime has been set to a value less than -1. An errno value of ENOENT
means that the interface is not available. An errno value of ETIME indicates that
dksplwait timed out before the splice completed.

6-97

DKTSPLICE (3X) (Release 4.0) DKTSPLICE (3X)

NAME
dktr_splice – transparent splice facility

SYNOPSIS
#include <dkit/dk.h>
#include <dkit/dkmgr.h>

dktr_splice(mgrp, dialstring, intf, uid)
struct mgrmsg *mgrp;
char * dialstring;
int intf;
uid_t uid;

dktr_osplice(mgrp, dialstring, intf, schan, nchan, uid)
struct mgrmsg *mgrp;
char * dialstring;
int intf, schan, nchan;
uid_t uid;

dktr_call(dialstring, intf, schan, nchan, baud, rbuf, uid)
char * dialstring, * baud;
int intf, schan, nchan, rbuf;
uid_t uid;

extern FILE * logf;
extern int loglvl;

DESCRIPTION
This set of functions is provided for the use of security servers that wish to make
use of the transparent splice facility available on newer releases of the AT&T Data
Switch. dktr_splice and dktr_osplice will request a transparent splice for an
incoming call request represented by mgrp and the destination represented by dial-
string. The interface of the outgoing call is given in intf and must be the interface
of the incoming call request. The outgoing call will be placed as user uid , assuming
uid is valid on the splicing host. dktr_osplice has two additional parameters that
attempt to place the outgoing call on channel in the range of schan to (schan plus
nchan). These two parameters allow the outgoing calls to be confined to some
known originating group on the data switch.

Both of these function will place the outgoing call using the baud rate and receive
buffer size from the incoming call request and then will answer the incoming call
request with the receive buffer size from the answer of the outgoing call. The func-
tions instruct the two circuits to withhold initialization and then splice the two cir-
cuits.

6-98

DKTSPLICE (3X) (Release 4.0) DKTSPLICE (3X)

dktr_call is a support function for dktr_splice and dktr_osplice. Most applica-
tions of dktr_splice and dktr_osplice do not need to call dktr_call; however, it is
available as an external function. dktr_call makes the outgoing call and allows
additional control over the outgoing dialstring. The parameters baud will set the
baud rate and rbuf will set the advertised receive buffer size in the dialstring.

FILES
/usr/lib/libdk.so host interface subroutine library
/dev/dk/dial default dialer device
/dev/dk/dialX dialer device for interface X
/dev/dk/ctlX Common Signaling Channel device for interface X

SEE ALSO
dkdial(3X)
dkmgr(3X)
dksplice(3X)
dkurpctl(3X)
dk_uxinfo(3X)

DIAGNOSTICS
dktr_splice and dktr_osplice will return zero for a successful request and non-
zero upon error. See dksplice(3X) for more details about splice errors. dktr_call
will return a positive number for a successful request and a negative number upon
error. Diagnostic messages are written to the file pointed to by logf . See
dkmgr(3X) for more details about logf .

WARNINGS
These functions provide access to the CommKit drivers for special applications.
They are only supported for data switch end points that have well behaved GOS5
transmitters. These functions should only be invoked while executing under the
root login name (user ID 0).

6-99

DKURPCTL (3X) (Release 4.0) DKURPCTL (3X)

NAME
dkurpctl – control the URP initialization of an AT&T data switch connection

SYNOPSIS
dkset_no_ainit(fd)
int fd;

dkset_one_ainit(fd)
int fd;

extern int dk_verbose;

DESCRIPTION
dkset_no_ainit overides the standard URP initialization processing by blocking all
acknowledgements for URP initialization requests. dkset_one_ainit overides the
standard URP initialization processing by blocking all acknowledgements for URP
initialization requests except for the very first request.

FILES
/usr/lib/libdk.so host interface subroutine library

SEE ALSO
dkerr(3X), dkhs(7).

DIAGNOSTICS
Both functions will return zero for a successful request and a negative number
upon error. Both will print an error message on standard error if the requested
action fails, unless the external variable dk_verbose has been set to 0 before the call
is made.

WARNINGS
These functions provide access to the CommKit drivers for special applications. Its
frivolous use may result in unusable connections and other undesirable conditions
that will only be cleared by closing the device.

6-100

DKXENVIRON (3X) (Release 4.0) DKXENVIRON (3X)

NAME
dkxenviron - transmit variables to a remote host

SYNOPSIS
#include <dkit/dk.h>

dkxenviron(netfd)
int netfd;

DESCRIPTION
dkxenviron sends environment variables to a remote host. The variables are sent
as a series of null-terminated strings. The environment variables to be sent are
listed, separated by commas, in the environment variable DKEXPORT.

The parameter netfd is the file descriptor of an open connection to the remote host
that is returned by a previous successful dkdial(3X)).

DIAGNOSTICS
Upon successful completion a value greater than zero is returned. Otherwise, a
value less than zero is returned.

FILES
/usr/lib/libdk.so

/usr/lib/libdk.a

SEE ALSO
dkdial(3X).

6-101

MAPHOST (3X) (Release 4.0) MAPHOST (3X)

NAME
maphost – map destination name to an AT&T data switch dialstring

SYNOPSIS
char *maphost (host, service, defsufx, defprot, parm)
char *host, *defsufx, *defprot, *parm;
char service;

char *miscfield (service, field)
char service;
char field;

DESCRIPTION
maphost maps the destination host name into a full data switch address using the
file /etc/opt/dk/dkhosts.

In addition to the dkhosts file, the user may create a .dkhosts file in his/her home
directory ($HOME/.dkhosts). maphost will map the destination host host name
using the local .dkhosts file first; if the file does not exist or a match is not found,
maphost will map the host name using the /etc/opt/dk/dkhosts file. maphost refer-
ences the user’s HOME environment variable to build the path to $HOME/.dkhosts.
The path is built only once during the first call to maphost. Therefore, any change
to the HOME environment variable on successive maphost calls does not change
the location of $HOME/.dkhosts.

maphost is an auxiliary routine used with dkdial(3X). For the maphost routine to
return a successful match to an entry in dkhosts(4), the host and service class argu-
ments to the maphost routine must match the host and service classes fields,
respectively, for some entry in dkhosts(4).

If the host argument is NULL, maphost will return the dialstring for the next host
in dkhosts(4) that matches the specified service class each time the routine is called.
Therefore, the first call to maphost with a null host argument will return the dial-
string for the first host in dkhosts(4) that matches the service class specified.
maphost does not rewind its file pointer. Therefore, successive calls start search-
ing from the last entry found in either the $HOME/.dkhosts file or the
/etc/opt/dk/dkhosts file.

Once a successful call to maphost has been made, miscfield extracts information
from the Miscellany column in the dkhosts(4) file.

The dialstring is then constructed from the following:

dialstring: from dkhosts(4)
service: from defsufx or from the Miscellany field in dkhosts(4)
protocol: from defprot or from the Miscellany field in dkhosts(4)
parameter: parm string to append

6-102

MAPHOST (3X) (Release 4.0) MAPHOST (3X)

FILES
/usr/lib/libdk.so host interface subroutine library

/etc/opt/dk/dkhosts host control file for destination mapping

$HOME/.dkhosts local host control file for destination mapping

SEE ALSO
dkdial(3X), dkhosts(4).

DIAGNOSTICS
The maphost routine will return a pointer to the dialstring (a static) if there was a
match. If there was no match and the host argument is not NULL, maphost will
return a pointer to a character string (a static) containing the value of the host
argument. If there was no match and the host argument is NULL, maphost will
return a value of NULL.

The maphost routine will return a value of NULL if called with null host and ser-
vice arguments.

Another item to note is if the host argument contains a full path name (any name
with a ’/’ in it), the maphost routine will not search the dkhosts(4) file. Instead, it
will construct a dialstring using the arguments passed to the maphost routine.
The miscfield routine will return a value of NULL if the Miscellany [see dkhosts(4)]
field is not listed for that particular host/service combination entry.

6-103

DKACCT (4) (Release 4.0) DKACCT (4)

NAME
dkacct – host interface accounting file format

SYNOPSIS
#include <dkit/acct.h>

DESCRIPTION
Accounting files produced by dkdaemon(1M) have records in the form defined by
<dkit/acct.h> , whose contents are:

struct dkacct
{

short dkA_unit; /∗ physical interface unit ∗/
short dkA_chan; /∗ physical channel on unit ∗/
time_t dkA_stime; /∗ connection start time ∗/
time_t dkA_etime; /∗ connection end time ∗/
uid_t dkA_uid; /∗ uid at open ∗/
dk_chan_stat_t dkA_stats; /∗ session statistics ∗/

};
typedef struct dkacct dkacct_t;

A record is written to the host interface accounting file each time a channel on that
interface is closed. Each record describes a complete session including the start
and end times in standard time(2) format, and the complete transfer statistics. The
transfer statistics are defined in <dkit/rdfp.h> and contain:

struct dk_chan_stats
{

u_long xmit_msgs; /∗ messages transmitted ∗/
u_long xmit_blocks; /∗ URP blocks transmitted ∗/
u_long xmit_bytes; /∗ bytes transmitted ∗/
u_long xmit_enq; /∗ transmitter ENQuires sent ∗/
u_long xmit_init; /∗ INITn characters transmitted ∗/
u_long rcv_msgs; /∗ messages received ∗/
u_long rcv_blocks; /∗ URP blocks received ∗/
u_long rcv_badblocks; /∗ URP blocks REJected ∗/
u_long rcv_bytes; /∗ bytes received ∗/
u_long rcv_rej; /∗ REJect characters received ∗/
u_long rcv_enq; /∗ ENQuires received ∗/
u_long rcv_initreq; /∗ INITREQ characters received ∗/
u_long rcv_init; /∗ INITn characters received ∗/

};
typedef struct dk_chan_stats dk_chan_stat_t;

6-104

DKACCT (4) (Release 4.0) DKACCT (4)

FILES
/var/opt/dk/log/dkacct default accounting file

SEE ALSO
dkdaemon(1M), dkserver(1M), dkstat(1M), dkaudit(4), dkhs(7), dkux(7).
time(2) in the UNIX System V System Programmer’s Reference Manual.

BUGS
Accounting records for incoming sessions list the user ID of the dkserver(1M) that
accept the connection rather than the user ID of the spawned process.

6-105

DKAUDIT (4) (Release 4.0) DKAUDIT (4)

NAME
dkaudit – host interface connection auditing record formats

DESCRIPTION
dkaudit logs the activity of the dkdaemon(1M) process in terms of server startup
attempts (see SERVER Messages), outgoing connection requests (see CONNEC-
TION Messages), and both inbound and outbound UNIXP messages (see UNIXP
Messages). These auditing records are generated by the dkux(7) when enabled
(default) by the dkux(7) tunable parameters and the dkdaemon(1M) run-time
options.

The dkaudit records are described below.

UNIXP Messages
These time-stamped messages document UNIXP message exchanges between
dkux(7) and the peer process in the AT&T data switch controller. Both inbound
and outbound messages may be recorded:

Month Day HH:MM:SS UNIXP: (Intf, Chan) <= 12 Hexadecimal Bytes of message

Month Day HH:MM:SS UNIXP: (Intf, Chan) => 12 Hexadecimal Bytes of message

Intf and Chan describe the physical interface and channel targeted by the message;
inbound messages are marked with "<=", and outbound with "=>".

Typical messages from a log might look like:

Oct 9 16:28:00 UNIXP: (0, 30) <= 03 02 1e 00 00 00 00 00 00 00 00 00

Oct 9 16:47:58 UNIXP: (0, 30) <= 03 01 1e 00 32 00 00 00 00 00 00 00

Oct 9 16:47:58 UNIXP: (0, 1) => 03 01 1e 00 00 00 00 00 00 00 00 00

SERVER Messages
dkserver(1M) start-up attempts are recorded as time-stamped SERVERmessages.
The primary form of the SERVERaudit message lists the numerical user ID (UID)
of the process attempting the DKANNOUNCEserver startup request:

Month Day HH:MM:SS SERVER: (Intf, Chan) "ServerName" Started by UID UID

Month Day HH:MM:SS SERVER: (Intf, Chan) "ServerName" Failed dk_errno= no. by UID

UID

Successful attempts are marked Started and unsuccessful ones Failed and
include the dk_errno (no.). ServerName is the dkserver(1M) name provided in the
request.

Servers started through dktli(7) do not provide a user ID and are recorded without
the "by UID " information:

Month Day HH:MM:SS SERVER: (Intf, Chan) "ServerName" Started

Month Day HH:MM:SS SERVER: (Intf, Chan) "ServerName" Failed dk_errno = no.

6-106

DKAUDIT (4) (Release 4.0) DKAUDIT (4)

A dkserver(1M) started by root with the name ’probe ’ would create the following
example audit entry:

Oct 9 14:16:54 SERVER: (0, 2) "probe" Started by UID 0

CONNECTION Messages
Outgoing connection attempts are recorded as time-stamped CONNECTIONmes-
sages. The primary form of the CONNECTIONaudit message lists the numerical
user ID (UID) of the process attempting the dkdial(3X) connection request:

Month Day HH:MM:SS CONNECTION: (Intf, Chan) "DialString" Started by UID UID

Month Day HH:MM:SS CONNECTION: (Intf, Chan) "DialString" Failed dk_errno= no. by UID

UID

DialString is the full dialstring sent to the data switch controller, including the gen-
erated newline and user ID if used. Successfully established connections are
marked Started and failed attempts Failed and include the dk_errno (no.).

Some connections made through dktli(7) may not include the "by UID " informa-
tion:

Month Day HH:MM:SS CONNECTION: (Intf, Chan) "DialString" Started

Month Day HH:MM:SS CONNECTION: (Intf, Chan) "DialString" Failed dk_errno (no.)

A failed attempt to print a file on a printer named Bodoni by root might appear
in the log as:

Oct 16 17:15:09 CONNECTION:(0,3) "nj/prt/Bodoni\n0" Failed dk_errno=6 by UID 0

A successful connection to the atomic time synchronization service on machine
time with parameter sync by user 101 could look like:

Oct 10 17:46:45 CONNECTION: (0,4) "time.atomic..sync\n101" Started by UID 101

SPLICE Messages
This audit message type is not yet implemented.

Log Level
The table below lists the log levels (controlled by the -v option of the
dkdaemon(1M) command) applicable to the dkaudit auditing records along with
the information included in the log level.

Log Level Logged Information

4 Server startups and errors
5 Outgoing connection requests
6 Valid inbound UNIXP messages
7 Outbound UNIXP messages
9 Outbound UNIXP keepalive messages

6-107

DKAUDIT (4) (Release 4.0) DKAUDIT (4)

FILES
/var/opt/dk/log/dkdaemonlog default dkdaemon(1M) auditing log file
/etc/conf/pack.d/dkux/space.c file containing dkux(7) tunable parameters (non-

3B2 machines)
/etc/master.d/dkux file containing dkux(7) tunable parameters (3B2

machines)

SEE ALSO
dkdaemon(1M), dkserver(1M), dkerr(3X), dkacct(4), dksrvlog(4), dktli(7), dkux(7).

6-108

DKDOTAB (4) (Release 4.0) DKDOTAB (4)

NAME
dkdotab – transparent remote command control file

DESCRIPTION
This file is used by the dkdo(1C) program to obtain information on where and how
to process commands. The default file is /etc/opt/dk/dkdotab.

dkdotab consists of one or more lines, each with exactly five fields. Each time a
command emulation is processed by dkdo(1C), it scans this file for the first match
with the command requested. If a match is found, the remaining fields indicate on
which host the command is to be executed, what flags affect the operation of
dkdo(1C), what option letters are applicable for execution of the desired command,
and whether the files associated with this command are input, output, or a combi-
nation of both. If a field in the dkdotab is not applicable for a given command, a
"– " must be specified in place of the field.

The field that participates in the match is the Command field. If the call fails to one
host, the table is scanned for the next match and the calling process repeated.

The lines consist of the following fields delimited by tabs and/or blanks.

Command: Command to be executed on a remote host. This field length is not to
exceed 16 characters.

System: System on which the command is to be executed. This field length is
not to exceed 64 characters.

Flags: Zero or more of the flags s or x. This field length is not to exceed 32
characters.
s If the filenames are preceded by an s., as with SCCS files, the file

without the s. is sent.
x use .rx instead of .do as the service class . Requesting the .rx ser-

vice on the remote system causes the user’s .profile on that sys-
tem to be executed prior to the remote command.

Options: Zero or more options may be specified for a given command. The
options correspond to the various command-specific options sup-
ported by dkdo(1C). This field length is not to exceed 128 characters.
The various options are delimited by four possible operators:
: Arguments that follow the option flag are arguments associated

with that option. The arguments may or may not follow
directly after the option specification.

˜ Only arguments that directly follow the option flag are associ-
ated with that option.

< Arguments that follow are input files.
> Arguments that follow are output files.

Files: Description of the type of files that follow the options associated
with this command. This field length is not to exceed 16 characters.
> Output file
< Input file

6-109

DKDOTAB (4) (Release 4.0) DKDOTAB (4)

* The preceding file indicator applies to all remaining files associ-
ated with this command.

: Preceded by a flag. Insert the indicated flag in the command line
before it is invoked.

EXAMPLES
The following table entry exemplifies a valid entry in the dkdotab.

lp hosta – d:n:o:t – c:<*

The command lp is executed on the system hosta [see dkhosts(4)] with no flags set.
The options indicated are those supported by dkdo(1C) for the lp command [see
lp(1)]. The delimiter ":" is an indication that the arguments that follow the option
flag are arguments associated with that option (the option arguments may directly
follow the option letter, or a space may exist between them). The value of the Files
field – c:<*, indicates that a flag of – c is to be inserted on the lp(1) command line
on the remote machine before it is invoked and all of the files that follow the
options associated with the lp(1) command are input files.

FILES
/etc/opt/dk/dkdotab default control table

SEE ALSO
dkdo(1C), maphost(3X), dkhosts(4).
lp(1) in the UNIX System V User’s Reference Manual.

6-110

DKGROUPS (4) (Release 4.0) DKGROUPS (4)

NAME
dkgroups – channel group control file

DESCRIPTION
dkgroups is used by the dkdial(3X) function to determine the interface and chan-
nel numbers to use in making a connection to a remote endpoint. Channel groups
are used to restrict users to a specified number of channels and control their access
permissions on remote hosts by means of different data switch originating groups.
A channel group can be specified by the shell variable DKGROUP or by using the
program interface on dkdial(3X).

The file consists of one or more lines, each with exactly four tab-separated fields.
For each call to dkdial(3X) with a channel group, the dkgroups file is scanned, stop-
ping at the first match. If a match is found, a connection is attempted using the
specified interface(s) and channel range. The call fails if:

1. No match is found

2. Destination rejects the call

3. All channels in the range are in use.

The lines consist of the following tab-separated fields:

name interface low high

name the name of the channel group; this name does not have to match the
originating group name on the data switch.

interface a comma-separated list of interfaces on which to make connection
attempts.

low the lowest channel number for the channel group.

high the highest channel number for the channel group.

The channel range consists of the values low through high inclusive.

EXAMPLES
securegrp 1 500 511

In this example, a call made by selecting securegrp will be attempted on interface
1, beginning at channel 500 and continuing to channel 511 (for a total of 12 chan-
nels). If the connection attempts are unsuccessful in this range, the call will fail.

manyintf 1,0 10 20

In the above example, calls made by selecting the group manyintf will be
attempted first on interface 1, beginning at channel 10 and continuing to 20 (a total
of 11 channels), and then on channels 10 - 20 on interface 0. The data switch ori-
ginating groups should be the same on both interfaces.

6-111

DKGROUPS (4) (Release 4.0) DKGROUPS (4)

FILES
/etc/opt/dk/dkgroups channel group control file

SEE ALSO
dkmaint(1M), dkdial(3X).

6-112

DKHOSTS (4) (Release 4.0) DKHOSTS (4)

NAME
dkhosts – host control file

DESCRIPTION
dkhosts is used by the maphost(3X) function to construct the appropriate AT&T
data switch dialstring for the host referenced.

In addition to the dkhosts table included with the CommKit Host interface
software package (/etc/opt/dk/dkhosts), the user may create a dkhosts table in
his/her home directory ($HOME/.dkhosts). If the $HOME/.dkhosts file exists, the
two dkhosts files are treated as one concatenated file when maphost is invoked (the
local $HOME/.dkhosts file followed by /etc/opt/dk/dkhosts); if the local
$HOME/.dkhosts file does not exist, the /etc/opt/dk/dkhosts file is used. The term
"dkhosts file" refers to both files: $HOME/.dkhosts and /etc/opt/dk/dkhosts. Specific
files are designated by the use of the pathnames.

The dkhosts file consists of one or more lines, each with exactly four fields. Each
time maphost(3X) is called, it scans dkhosts for the first match with the Host and
the service Classes specified. If a match is found, the remaining fields indicate the
appropriate data switch dialstring for that particular host and include miscellane-
ous information to be parsed. The fields that participate in the match are the Host
and Classes fields.

The lines consist of the following fields delimited by tabs.

Note: Delimit fields by tabs only. Do not use blanks.

Host: Host to which the call is being made.

Classes: Service class to match

d dkdo
f file transfer
l remote login
p printer
x remote execution

Dialstring: Dialstring of host.

Miscellany: Subfields in this field are separated by commas and have two-
character names constructed from the service class character and
another character appropriate to the service class. The characters
representing the field names are:

c command to execute
s service name
v existence of environment variables (y or n)
p protocol string
o old protocol (y or n)

6-113

DKHOSTS (4) (Release 4.0) DKHOSTS (4)

EXAMPLES
An entry of ’ls=rx ’ in the Miscellany field in the dkhosts file, would mean that for
remote login the service invoked is ’rx’.

An entry of ’fo=y ’ in the Miscellany field in the dkhosts file, would mean that for
file transfer the old file transfer protocol is to be used.

FILES
/etc/opt/dk/dkhosts host control file for destination mapping

SEE ALSO
authorize(1M), maphost(3X).

6-114

DKSRVLOG (4) (Release 4.0) DKSRVLOG (4)

NAME
dksrvlog – host interface server log file

DESCRIPTION
This file is used by the dkserver(1M) program to log information about incoming
call requests. The default log file name is /var/opt/dk/log/dksrvlog and may be
changed with the ’-l’ option to dkserver(1M). The ’-v’ option to dkserver(1M) speci-
fies the amount of information that will be written to the log file. A log level of 1
prints out the least information and a log level of 9 prints out the most informa-
tion. The default dkserver(1M) log level is 6 .

Each entry in the log file (for log levels 6 or lower) begins with a time stamp that
includes the date, time, interface, and channel number of the current call. It also
contains the process ID of either the dkserver(1M) or the current call.

The first message logged after dkserver(1M) starts is:

time_stamp SERVER name is INITING files=(srvtab dkuidtab) loglvl=n

time_stamp dkmgr: SERVER name is ACTIVE and SERVING

where name is the name of the host interface server started, srvtab is the name of
the dkserver(1M) control table, dkuidtab is the name of the dkuidtab(4) file and n is
the level at which the server activity is logged.

More information is printed depending on the following log levels:

Loglevel Log Information

1 Each incoming call is logged with the service requested,
the user ID, and the dialstring of the remote system the
call originated from. The entry will also show whether
the call was accepted with the token REQUEST or rejected
with the token DENIED.

2 Logs the reasons incoming calls are rejected. The token
used is either ERROR or DENIED.

3 Enters information when a call exits, including the device,
process ID, and exit code. The exit code is passed from
the process which was spawned by the dkserver(1M) for
the call. Consult the documentation for the exiting process
and refer to the exit(2), wait(2), and signal(2) manual
pages. The token used is EXIT.

4 Arguments that are passed with the incoming call are logged.
The token is ARGS.

5 Same as log level 4.

6-115

DKSRVLOG (4) (Release 4.0) DKSRVLOG (4)

6 Same as log level 4.

7 Prints information useful for debugging.

8 Logs the number of channels per interface and, for each call,
the parsed dialstring. This information is actually logged
by the dkmgr() function which receives and parses incoming calls.
The value of the optional key, DKKEY see authorize(1M), is
also logged by the dkmgr() function.

9 The full dialstring (including DKKEY) as it was received will
be logged.

FILES
/var/opt/dk/log/dksrvlog default name of the dkserver(1M) log file

SEE ALSO
authorize(1M), dkserver(1M), dkdial(3X), dkuidtab(4), srvtab(4).
exit(2), signal(2), wait(2) in the AT&T UNIX System V Programmer’s Reference
Manual.

6-116

DKUIDTAB (4) (Release 4.0) DKUIDTAB (4)

NAME
dkuidtab – host server user ID mapping file

DESCRIPTION
This file is used by the dkserver(1M) program to obtain information on how to map
user ID’s from incoming call requests to valid user ID’s on the local system. The
file consists of one or more lines, each with three fields. Based on control informa-
tion in srvtab(4), dkserver(1M) may scan this file for a match of the Originating
Group name and user ID. If no match is found, dkserver(1M) advances to the next
control file entry. If a match is found, the remaining fields in dkuidtab indicate
which local user name and password to use in processing the call request. The
default user ID mapping file is /etc/opt/dk/dkuidtab.

This file is updated by the authorize(1M) program. The lines consist of the follow-
ing fields delimited by blanks:

Field 1: area/exch/group.user[/key] – – the Originating Group name followed
by a period, the remote user ID, and an optional slash followed by
a key. The key contains the value of the DKKEY environment vari-
able at the time of the authorization. The DKKEY variable allows
for pre-establishment of more than one login to a remote host
from the same login on the local host. See authorize(1M).

Field 2: The login name of the user to be used on the local system.

Field 3: The encrypted password of the user on the local system, or a ’:’ if
the user does not have a password.

FILES
/etc/opt/dk/dkuidtab default user ID mapping file
/etc/opt/dk/dkuidtab:o backup user ID mapping file

SEE ALSO
authorize(1M), dkserver(1M), dkdial(3X), dksrvlog(4), srvtab(4).

WARNINGS
The dkuidtab file should be checked periodically for corruption. The
authorize(1M) or dkserver(1M) programs only detect one type of corruption in this
table and that is whether there are at least three fields on each line. An error is
posted in the dkserver(1M) log file [see dksrvlog(4)] when it detects this error. The
authorize(1M) program reports the error to the user when it detects this error.

6-117

SRVTAB (4) (Release 4.0) SRVTAB (4)

NAME
srvtab – dkserver(1M) control file format

DESCRIPTION
This file format is used by the dkserver(1M) program to obtain information on how
to process incoming call requests. The format consists of one or more lines, each
with exactly six fields. The lines are kept in a number of files in the srvtab direc-
tory. The default directory is /etc/opt/dk/srvtab. The file to be searched is located
by the incoming Service name (for example, /etc/opt/dk/srvtab/login is the name of
the file used for the login service). If no file exists for a specific service, then the
catch-all file "*" is used.

Each time a call is processed by dkserver(1M), it scans the appropriate srvtab file
for the first match with certain fields in the incoming call request information. If
no match is found, the call is denied. If a match is found, the remaining fields
indicate which program to execute, what arguments to pass to it, etc. The fields
which participate in the match are the System, Service, and User fields. The Flag
field may also be used to limit the scope of the service (see Flag below).

Any line that has a leading "#" character is a comment line. All other lines are con-
trol lines.

The control lines consist of the following fields delimited by tabs:

Note: Delimit fields by tabs only. Do not use blanks.

System: Originating Group name pattern: area/exchange/group[!][.user]. Ori-
ginating group patterns may be completely specified, or contain
embedded asterisks, question marks, and/or bracketed charac-
ters.

Each embedded asterisk matches any set of zero or more charac-
ters and each embedded question mark matches any single char-
acter. For example, area6/e*/???? matches only 4-character groups
in area area6 whose exchange begins with the letter e; the patterns
*, */*, and */*/* are equivalent and match all originating groups.

Brackets are used to match a single character from a list and/or a
range of characters. Bracketed characters may be included any-
where in the group pattern, up to but not including the .user part
of the field. Any ASCII character is valid within brackets. The
asterisk (*) and question mark (?) are taken as literal when they
appear within brackets.

(NOTE: The use of special characters in pattern matching is simi-
lar to the use of special characters in ed, however it is not exactly
the same.)

There are two special symbols which may be used within the
brackets to specify a range or the negation of elements: the dash
(-) and the caret (ˆ), respectively. The character preceding the –

6-118

SRVTAB (4) (Release 4.0) SRVTAB (4)

must be less than or equal to the ASCII value of the character fol-
lowing the – . For example, area6/exch[1-3]/host0 matches
area6/exch1/host0, area6/exch2/host0, and area6/exch3/host0.

When the ˆ symbol is used, it must appear immediately following
the left bracket; if it appears in any position other than the first
position, it is taken as a literal character. The operation of the ˆ
symbol applies to all characters which follow it. For example,
area6/exch[ˆ1-4]/host0 matches area6/exch5/host0. Exchanges
exch1, exch2, exch3, and exch4 have been negated by the brack-
eted expression [ˆ1-4].

If the last character in the pattern is a "!", then the pattern does not
match the dkserver(1M) name. For example, if the local server
name is hostx, area6/exch2/*! matches all groups in area area6 and
exchange exch2 except for area6/exch2/hostx. This feature can be
used to prevent users from calling themselves. NOTE: The server
name of the host and the Originating Group name of its interface
on the AT&T data switch must be assigned the same value for the
! feature to be effective.

Specification of the optional .user field allows selection/restriction
of services to certain users. The .user field is the decimal value of
the ID of the user on the originating host. The symbols <, >, and –
may be specified in the .user suffix. Therfore, the pattern
area1/exchange2/hosta.<uid1 would match any user with an
incoming uid less than uid1. Similarly, using the > would match
any user with an incoming uid greater than uid1.

The hyphen (–) is used to specify a range. For example, the pat-
tern area1/exchange2/hosta.uid1-uid3 will match any user with
an incoming uid between uid1 and uid3, inclusive.

NOTE: When specifying a range, the first uid must be less than or
equal to the second uid in the range.

Service: The specific service requested, (that is, the string which appears
after the period in the dialstring). The special entry "– " matches
the null service (that is, the case where no specific service is
requested). A single asterisk functions as a service wildcard
which will match any requested service. The following services
exist by convention; others may be added as needed by the appli-
cation.

- null service (generally login)
* wildcard service (matches any requested service)

6-119

SRVTAB (4) (Release 4.0) SRVTAB (4)

login login
do invoke commands on remote hosts
rl remote login
pupu file transfer (for example, push/pull)
rx remote execution
uucp uucp handler
authorize invoke authorize(1M) on remote hosts

Flag: One or more of the protocol flags aehltuvxILPRUTM/ or Et may
be specified:

a Additional arguments should be read from the incoming
data channel by dkserver(1M) before executing the applica-
tion program.

e Arrange for the exit code of the remotely executed com-
mand to be passed back to the originating system.

h Spawn process with SIGHUP ignored.

l Spawn a TLI application from the srvtab Service.

t Open the tty mode device driver for the channel, and make
it the program’s standard input, standard output, and stan-
dard error files.

u Use plain URP protocol.

v Environment variables should be read from the incoming
data channel by dkserver(1M) before executing the proper
application program. (Remote execution only.)

x Open the remote execution protocol device driver for the
channel.

F Inform dkserver(1M) that the invoked program should be a
child process of init(1M). Use of this flag prohibits the use
of any utmp related flags: I, U, L. If any utmp flag is used in
conjunction with the F flag, the incoming call will be rejected
and an error will be written to the dksrvlog file.

I Make an INIT_PROCESS type of utmp(4) entry. The I flag
cannot be used in conjunction with the F flag.

L Make a LOGIN_PROCESS type of utmp(4) entry. This flag
should be used for all services, like login(1) that write the ini-
tial entries in the system wtmp file. The L flag cannot be used
in conjunction with the F flag.

M Use this flag to send mail to the specified user ID when a
service is requested illegally.

6-120

SRVTAB (4) (Release 4.0) SRVTAB (4)

P Retain the dkserver’s nice(2) priority when invoking the
application. The application is expected to lower the prior-
ity after a short interval by means of nice(2). If this is not
done, incoming call processing can fail because there are too
many high priority processes. The P flag should never be
used in a srvtab entry that invokes user login processing or
any other long running processes.

R Restrict this entry to user IDs having "ordinary" shells
(defined as ending in sh and not beginning with r).

T Trap this call, rejecting it with the error code given in the
first entry of the Parms field. Also log a message generated
by %-substituting the Parms field.

U Make a USER_PROCESS type of utmp(4) entry. The U flag
cannot be used in conjunction with the F flag.

/ If a "/" is present, the flags that precede it are the settings
that are used. Any flags that follow the / act as the default
flag settings but will be replaced by user supplied protocol
fields. This flag is invalid if the user supplied protocol field
is illegal or if it contains any of the uppercase flags (for
example, I, L, U, R, or T).

 If a "" is present, the list of STREAMS modules that follows
the will be pushed onto the stdin STREAM. The STREAMS
module list should be separated by colons (:) if more than
one of STREAMS module is specified. The should be the
last flag specified in the flag field.

Et The Et flag may appear only in the dialstring as the final two
characters of the protocol field. dkserver(1M) sets the end-
point type to t, overriding the default value provided by the
data switch network. The character t must be a valid data
switch endpoint type code. See dkepoint(3X) for additional
information.

User: The way in which the calling user ID is to be treated. The user ID
may be used unchanged, restricted to a range, mapped using the
authorization table, or set to a fixed value.

*n, *o Use the numeric value of the user ID supplied in the
call request information. The *o means treat the
user ID as octal while the *n means treat the user ID
as having a self-determining format where an initial
0x or 0X indicates hexadecimal, an initial 0 indicates
octal, and the presence of neither indicates decimal.
If the password for the user ID of the remote user
has expired, the entry is considered invalid.

6-121

SRVTAB (4) (Release 4.0) SRVTAB (4)

& Translate the supplied origin group name and user
ID using the dkuidtab(4) file to match users who have
established authorization via use of the
authorize(1M) program. This type of entry matches
only user IDs which have entries in the dkuidtab(4)
file. If no entry is found, the dkserver(1M) program
continues to search the srvtab file for a match.

<uid, >uid The previous two forms can be further restricted to a
range of user IDs by appending <uid or >uid to the
field. This restricts the incoming user ID to be less
than (greater than) the specified decimal number.
For example, *n>0 prevents root (user ID 0) from
using a particular service. Only one modifier may
be appended to an entry.

login This type of entry allows a fixed user ID listed in the
passwd(4) file to be chosen.

= and – The symbols = and – are allowed in the User Field
to specify a specific uid or a range of uids, respec-
tively. Examples are shown below:

*n=uid access granted for a specific uid
*n=uid1-uid2 access granted for a range of uids
*o=uid access granted for a specific uid
*o=uid1-uid2 access granted for a range of uids
&=uid access granted for a specific

authorized uid
&=uid1-uid2 access granted for a range of

authorized uids

Program: The pathname of the program to be executed. This field may con-
tain a %s which is substituted for the pathname of the user’s shell
as obtained from the passwd(4) file. Use a "– " to indicate that no
program needs to be executed after the incoming call is accepted.

Parms: The initial arguments to the program. If no program is specified in
the previous field, enter a – for this field. Arguments separated
by colons will be followed by arguments passed on the call, pro-
vided that the – a flag is present, indicating that additional argu-
ments follow. Arguments may contain tokens which start with a
percent sign (%) that cause another string to be substituted in
their place. Since some older versions of data switches do not
support certain features, the substitution string may turn out to be
NULL. The following are the possible substitution strings:

6-122

SRVTAB (4) (Release 4.0) SRVTAB (4)

%b the baud rate of the calling terminal.

%c Originating channel number (also see %m and %n).

%d The dialed service name, not including the period or any-
thing after it; (that is, the destination address part of the
dialstring).

%e The service field of the dialstring.

%f The Originating Group name.

%h The local server name.

%l The originator, as known to local node. %m The originating
module number (also see %c and %n).

%n The originating node name (also see %c and %m).

%o The type of originating device.

%p Parameters from the dialstring, reparsed, so that if they con-
tain colons, separate arguments will be generated.

%r The protocol field of the dialstring, if any.

%s The pathname of the user’s shell as obtained from the
passwd(4) file.

%t The device file name which corresponds to the assigned data
switch channel, minus the initial /dev.

%u The user ID of the user placing the call.

%x The call flag: F if this is the first call from the device, P if
there have been previous calls. Applies only to originating
ports which have been assigned a predefined destination.

%z The module type flag will return the module type of the ori-
ginating device if the data switch includes this information
in the dialstring (field 1 of the fifth line of the dialstring).

%C The name of the srvtab control directory being used.

%H The originating group name truncated to the length of the
host field of an /var/adm/utmp entry.

%U The name of the user ID mapping file [see dkuidtab(4)].

EXAMPLES
The following example illustrates the use of brackets for pattern matching ori-
ginating group names. The incoming dialstring arD/exch5/systemb will match
any one of the listed system field entries:

6-123

SRVTAB (4) (Release 4.0) SRVTAB (4)

System Field (originating groups):
arD/exch5/system[a-f]
ar[x-zDF]/exch[385]/system[rbv]
ar[ˆC]/exch5/systemb
arD/exch[ˆxyz2-4rt6-8]/system[bbbbb]
ar[1D]/ex*[xn45]/[s]ystemb
[a-z][r-z]D/exch[861-5]/system[A-b]
?rD/exch?/system[ˆg-zA-Fa0-7]
arD/[e-f]*[0-7]/system[?b*]
arD/exch5/system[xyˆb]

The following samples exemplify valid entries in the file /etc/opt/dk/srvtab/rl , the
control file for remote login.

System Service Flag User Program Initial Parms
#
ar1/exch2/grp? rl U/vx *n %s – Dsh
ar1/??ch2/* rl U/vx *n>10 %s – Dsh
* rl T/vx *n<10 – 7:Privileged (%u)
ar1/exch6/*.>500 rl U/vx &=1000-1700 %s – Dsh
* rl I/vx root /bin/login login

The first line matches calls from groups of the form grp followed by any single
character in exchange exch2 and area ar1. The user making the call must have the
same user ID locally and remotely to match the table entry. The second line
matches calls from any group whose exchange begins with any 2 characters fol-
lowed by ch2 in area ar1. In addition, these calls must be originated from "non-
administrative" logins (for example, numeric user IDs greater than ten) also using
the same user ID locally. The third line traps remote login requests from any users
with numerical user IDs less than ten. Their calls are rejected with an ACCESS
DENIED code and their user ID is logged in the server log file. The fourth line
matches calls with uids greater than 500 from any originating group from area ar1
in exchange exch6 which have pre-established authorization to any uid in the
range 1000-1700. The last entry will invoke the normal login(1) program for callers
from any area/exchange/group pattern that does not match any of the preceding
/etc/opt/dk/srvtab/rl entries. On UNIX SVR4.2 systems login(1) cannot be invoked
by dkserver(1M) so the last line must be deleted. It could have been replaced with
a line using the ttymon(1M) process. However, the ttymon(1M) process assumes
the special file is a STREAMS device and the remote execution driver is not.

This example, from a control file named /etc/opt/dk/srvtab/whoami , just prints
interesting information about the caller:

* whoami /u adm /bin/echo echo:You are:%u:from:%f:(%n.%m.%c).\n\r

The following example, from the control file /etc/opt/dk/srvtab/uucp , illustrates how
to choose different user IDs for UUCP based on the caller:

System Service Flag User Program Initial Parms
#
my/mynode/*.5 uucp u luucp %s uucico
*.? uucp u euucp %s uucico

6-124

SRVTAB (4) (Release 4.0) SRVTAB (4)

*.5 uucp u ouucp %s uucico

The first line only accepts calls from user ID five (hopefully a UUCP process) from
hosts in the exchange (my/mynode) and maps them to the secure login luucp .
The second line accepts calls from modem-pools (user ?) and maps them to the
"external" login euucp . The last line accepts calls from all other multiplexed hosts
and maps them to the login ouucp .

The following is an example of a trap and mail message to a user "exptools." If the
M flag is present, a mail message will be sent to the user "exptools" upon a trap on
an illegal service request.

This line is an example of trap & mail message to a user "exptools".
If the ’M’ flag is present a mail message will be sent to the user
#"exptools" upon a trap on an illegal service request.
* login M exptools /opt/dk/sbin/dksrverr dksrverr:exptools:\
%e:%f.%u:node=%n, module=%m, channel=%c

UNIX SVR4.2 CAVEATS
The terminal login service provides login security on all systems, and can use the
ttymon port monitor instead of invoking login(1) directly. This is required on
UNIX SVR4.2 systems because login(1) cannot be invoked by the dkserver(1M) pro-
cess. On UNIX SVR4.2 systems, ttymon invokes login(1) which restricts the minor
device number to 0-255. Since the CommKit Host Interface minor number can
range from 0-511 for systems with one data switch interface and 0-1023 for sys-
tems with two data switch interfaces, the user is restricted to using only minor
numbers 0-255 for incoming calls that invoke ttymon(1M), i.e., incoming calls that
produce a login: prompt.

Two options are available to deal with this problem: Limit the total number of
CommKit Host Interface channels to a maximum of 256. This is the preferred
solution if it is acceptable to have no more than 256 channels available for all
CommKit Host Interface applications on the host. If using a system with one
CommKit Host Interface, then the interface should be configured to 256 channels
or less. If using a system with two CommKit Host Interfaces, then each interface
should be configured to 128 channels or less. Select the incoming channel from
the originating point for calls that invoke login(1). This is the preferred solution if
it is necessary to have more than 256 channels available for all CommKit Host
Interface applications on the host. The user should select the biggest free channel
number less than 256.

If it is assumed that the CPM module to which a CommKit Host Interface 4.0v3
host is connected is in data switch slot 23, then channel 255 can be selected from
the originating point as follows:

dkcu area/exchange/host.23.255

The next call attempt on channel 255 will fail and so channel 254 should be
selected:

dkcu area/exchange/host.23.254

6-125

SRVTAB (4) (Release 4.0) SRVTAB (4)

This type of solution restricts the incoming channel numbers of calls invoking
login(1) to be less than 256 while allowing other incoming calls, e.g., calls invoking
remote execution or TLI, to use largest available channel number, even if that
number is greater than 255.

FILES
/etc/opt/dk/srvtab default srvtab directory
/etc/opt/dk/dkuidtab default user ID mapping file
/var/adm/utmp Connection accounting

SEE ALSO
authorize(1M), dkserver(1M), dkdial(3X), maphost(3X), dksrvlog(4), dkuidtab(4).
passwd(4), utmp(4) in the AT&T UNIX System V System Administrator’s Reference
Manual.
login(1) in the AT&T UNIX System V User’s Reference Manual.

WARNINGS
A single flat file format is still supported but is discouraged because of its impact
on performance. In the flat file format the lines of the file are identical to the ones
in the files named after the services. The default flat file is /etc/opt/dk/srvtab.

6-126

DKHS (7) (Release 4.0) DKHS (7)

NAME
dkhs – High-Speed CommKit Host Interface STREAMS driver

DESCRIPTION
dkhs is a STREAMS device driver that provides a high-performance CommKit
Host Interface for the host system. This driver handles all URP protocol encoding
and packet assembly, leaving all call establishment functions to be performed by
the optionally pushed dkux(7) module.

The dkdaemon(1M) process started when entering init state 2 by the dkitrc(1M)
script opens the Stream associated with each Common Signaling Channel device and
pushes and holds the dkux(7) module on the Stream for support of the interfaces.
Each physical interface remains active as long as dkdaemon(1M) keeps the dkux(7)
module pushed on the associated Common Signaling Channel .

Read-side Behavior
Several different STREAMS messages are generated by the dkhs driver:

M_CTL Supervisory interactions between this driver and the dkux(7) call
processing module take place via commands contained in M_CTL
messages. Supervisory messages are sent upstream only on Streams
associated with the Common Signaling Channel devices where it is
expected that they will be processed by the dkux(7) module.

M_DATA Inbound received data is sent upstream by this driver encapsulated
in M_DATAmessages. Each M_DATAmessage chain consists of a sin-
gle user-level message of normal data and should not be interpreted
as URP control codes or commands.

Received messages are split at intermediate (that is, BOTM) URP data
block boundaries whenever necessary to prevent an accumulated
message from exceeding the dkhs_rcv_max_msg_sz tunable
parameter. Messages are also split at every point an URP Level– D
control code is encountered in the data stream.

M_FLUSH Standard STREAMS support for M_FLUSHmessages is provided.

M_HANGUP dkhs sends an M_HANGUPmessage upstream on the Stream associ-
ated with a circuit when the dkux(7) module indicates via a super-
visory message that the circuit has been disconnected at the remote
end or by the network.

M_IOCACK All successfully processed M_IOCTL messages are positively ack-
nowledged with an upstream M_IOCACKmessage.

M_IOCNAK All unsuccessfully completed or unrecognized M_IOCTL requests are
negatively acknowledged with upstream M_IOCNAKmessages.

M_PCSIG Interrupts from the CommKit Interface hardware are converted into
M_PCSIGmessages when the physical interface is in diagnostic mode.
These messages are sent upstream on the Stream associated with the
diagnostic device for the interrupting interface.

6-127

DKHS (7) (Release 4.0) DKHS (7)

M_PROTO URP Level– D control codes received for a circuit are sent upstream
in M_PROTOmessages.

M_SETOPTS The Stream-head for each dkhs device is configured on initial open
for message no-discard mode to preserve read message boundaries.

Write-side Behavior
Various STREAMS messages are recognized and processed by the dkhs driver:

M_BREAK The URP Level– D control code for BREAKis transmitted on the cir-
cuit associated with the Stream when this message is received.

M_CTL Supervisory interactions between this driver and cooperating
upstream modules and drivers (that is, dkux(7), dktli(7), etc.) take
place via commands contained in M_CTLmessages.

M_DATA Outbound data for transmission should be sent to the driver encap-
sulated in M_DATAmessages.

The message chain is transmitted on the circuit using URP GOS5 as
zero or more intermediate BOTMblocks followed by a single BOT
block.

M_DELAY The appropriate combination of URP Level– D DELAYcontrol codes
is transmitted on the circuit associated with the Stream when this
message is received. The one or more control codes are transmitted
within a single URP block.

M_FLUSH Standard STREAMS support for M_FLUSHmessages is provided.

M_IOCTL A number of commands may be sent from user-level to the driver in
the form of M_IOCTL messages.

M_PROTO The transmission of URP Level– D control codes may be requested
via appropriately formatted M_PROTOmessages.

M_START Starts the previously halted transmitter associated with the Stream
so user data transmission on the circuit may resume.

M_STARTI Releases the previously flow-controlled receiver associated with the
Stream so incoming data may be sent upstream.

M_STOP Halts the transmitter associated with the Stream so no new user data
blocks are transmitted on the circuit until a subsequent M_STARTis
received.

M_STOPI Flow controls the receiver associated with the Stream so no M_DATA
messages are sent upstream until a subsequent M_STARTI is
received.

6-128

DKHS (7) (Release 4.0) DKHS (7)

FILES
/dev/dk/ctlX Common Signaling Channel device for interface X
/dev/dk/diagX diagnostic device for interface X
/dev/dk/dial default dialing device
/dev/dk/dialX clone device for interface X
/dev/dk/ intf.chan individual raw channel devices

SEE ALSO
dkdaemon(1M), dkdiag(1M), dkitrc(1M), dkmaint(1M), dkserver(1M), dkleveld(3X),
dktli(7), dkty(7), dkux(7).
getmsg(2), putmsg(2), read(2) in the UNIX System V Programmer’s Reference Manual.

DIAGNOSTICS
Several error values have different or uncommon meanings when received from
the dkhs driver. The errors returned by dkhs are:

EBADMSG A read(2) system call will return this error when a M_PROTOmessage
containing an URP Level– D control code reaches the head of the
Stream. Use isdkleveld() (see dkleveld(3X)) or getmsg(2) to retrieve the
message containing the Level– D code.

EBUSY All attempts to open a device that is marked EXCLUSIVE or attempts
to open the diagnostic device while the interface is active will be
failed with an EBUSYerror return code.

EHOSTDOWNOpens of the clone device or the individual channel devices will be
rejected when dkdaemon(1M) is not active or when the daemon is in
the process of reinitializing the interface. Opens of the Common Sig-
naling Channel device will be rejected with this error when the data
link between the CommKit Interface hardware and the CPM-HS can-
not be activated.

EIO Attempts to open the diagnostic device will be rejected with the EIO
error when a fault occurs entering diagnostic mode. Consult the sys-
tem console or console logs for additional diagnostic messages.

ENODEV Opens of non-existent devices and interfaces will be rejected with
this error code. Attempts to open interface devices after a configura-
tion failure will also result in ENODEVerror return codes.

6-129

DKMX (7) (Release 4.0) DKMX (7)

NAME
dkmx – remote execution multiplexer

DESCRIPTION
dkmx is a STREAMS multiplexing driver that links the remote execution user
interface [see dkxqt(7)] with the host interface raw driver [see dkhs(7)]. The driver
has a single device /dev/dk/dkxmx0 that is opened by the dkdaemon(1M) process.
dkdaemon(1M) processes the driver’s requests for links to the dkhs(7) driver.

This interface is used internally to support the remote execution protocol [see
dk(1C)] and does not support any user-level application. An open by any process
that is not a dkdaemon(1M) process will have insipid but benign results.

FILES
/dev/dk/dkxmx0 Common Signaling Channel device for the inter-

face

SEE ALSO
dk(1C), dkdaemon(1M), dkhs(7), dkxqt(7).

DIAGNOSTICS
The driver sends a single log message to dkdaemon(1M) at startup time. Messages
like the following will be entered into the daemon log file:

Feb 4 17:46:28 LOG: (0, 0) dkxqt mux driver is active

Error values have the following meanings when received from the dkmx driver:

EBUSY Attempts to open the driver a second time will fail with this error.

EPERM Attempts to open the driver by a process that does not have super-
user permissions will fail with this error.

ENXIO Attempts to open a device other than /dev/dk/dkxmx0 will fail with
this error.

EAGAIN If there is insufficient memory, a open will fail with this error.

6-130

DKPE (7) (Release 4.0) DKPE (7)

NAME
dkpe – CommKit Host Interface Board driver

DESCRIPTION
dkpe is a character special device driver that provides a high-performance inter-
face between the CommKit interface hardware and the dkhs(7) driver. This driver
supports downloading, queue management and interrupt vectoring for all
CommKit Host Interfaces resident in the system.

Access to the dkpe driver is through the dkipump(1M) command and the dkhs(7)
driver.

FILES
/dev/dkpeX download device for interface X

SEE ALSO
dkipump(1M), dkhs(7).

6-131

DKTLI (7) (Release 4.0) DKTLI (7)

NAME
dktli – CommKit Interface Connection Oriented Transport Provider

SYNOPSIS
t = t_open(/dev/dktp0"," O_RDWR, NULL);

DESCRIPTION
dktli is the CommKit Host Transport Provider that supports a Transport Provider
Interface (TPI). Programs can access dktli using the Transport Level Interface
(TLI) [see UNIX System V Release 4.0 Programmer’s Guide: Networking Interfaces for
more information about TLI] where it supports the connection-oriented with ord-
erly release (T_COTS_ORD) service type. dktli supports all TLI connection-mode
primitives and all TLI common management primitives except t_optmgmt. dktli
does not support any connectionless mode primitives and does not support
transmission of user data during any state other than data transfer.

dktli consists of the dktm multiplexing driver. dktli interfaces with the dkux(7)
module (which provides call management functions) and dkhs(7) driver at the bot-
tom for call management and data transfer. dktli uses a user-level daemon pro-
cess dkdaemon(1M) to link and unlink dkhs(7) Streams below the multiplexing
driver dktm . The TPI becomes available when the dkdaemon(1M) process starts
and the TPI becomes inaccessible when the dkdaemon(1M) process stops.

The net_spec associated with dktli is dktpX, where X is the host hardware interface
number. On systems installed with more than one host hardware interface, appli-
cation programs may access a particular hardware interface through invoking
t_open(3N) with the desired net_spec (for example, /dev/dktp0) as the argument. A
network server may offer a service with the name, LISTENAME, known to its
clients by invoking t_bind(3N) to bind LISTENAME to the transport endpoint.

EXAMPLE
The code fragments below illustrate how a client can establish an AT&T data
switch circuit through dktli to a server listening on address LISTENAME.

#include <tiuser.h>

struct t_call *sndcall;

fd = t_open("/dev/dktp0", O_RDWR, NULL);
t_bind(fd, NULL, NULL);

.

.

.
sndcall->addr.buf = "area/exchange/LISTENAME";
sndcall->addr.len = sizeof("area/exchange/LISTENAME");
t_connect(fd, sndcall, NULL);

6-132

DKTLI (7) (Release 4.0) DKTLI (7)

FILES
/dev/dktpX control device for interface X
/usr/lib/libnsl.so TLI subroutine library

SEE ALSO
dkdaemon(1M), dkhs(7), dkux(7).
listen(1M), nlsadmin(1M), rfadmin(1M), sacadm(1M), strace(1M), sterr(1M),
t_bind(3N), t_open(3N), netconfig(4), timod(7), tirdwr(7), in the UNIX System V Sys-
tem Administrator’s Reference Manual and UNIX System V Release 4.0 Programmer’s
Guide: Network Interfaces.
log(7) in the UNIX System V Programmer’s Guide: STREAMS.

DIAGNOSTICS
The STREAMS log routine strlog() is used to log trace and error messages.

6-133

DKTY (7) (Release 4.0) DKTY (7)

NAME
dkty – host tty interface module

DESCRIPTION
dkty is a STREAMS module that provides an interface between the ldterm(7) stan-
dard terminal STREAMS module and the CommKit Host Interface STREAMS
driver dkhs(7). Its primary function is to intercept and translate write-side termi-
nal ioctls(2) and read-side URP level-D code messages.

The functions in the c_cflag field of the termio(7)/termios(2) structure that are per-
formed by the dkty module are PARENB, PARODD and B0. The other functions
are ignored by the dkty module. (Note that the default flags set by the
dkserver(1M) are B9600, CS7, CREAD and HUPCL. Therefore, the default is that
the parity generation is disabled.) If parity generation is enabled and CS8 is not
set, the PARODD flag specifies odd parity if set; otherwise, even parity is used. If
the baud rate field CBAUD is set to zero (B0), the dkty module will disconnect the
line by sending an M_HANGUP message to the Stream-head.

The dkty module does not perform the functions specified by the INGPAR,
PARMRK, and INPCK flags in the c_iflag word of the termio(7)/termios(2) struc-
ture. In general, input parity is ignored and all eight bits are passed up to the
STREAM module above (such as, ldterm).

Read-side Behavior
The dkty module scans all upstream M_PROTOmessages for URP Level– D codes
and translates them appropriately. All other messages and M_PROTOmessages
that do not contain Level– D codes are passed upstream unchanged.

M_PROTO Messages containing an URP Level– D BREAK code are converted
into an upstream M_BREAK message. Messages containing a URP
Level– D EOF code are converted into a zero length upstream
M_DATA message. M_PROTO messages containing any other URP
Level– D codes are squelched.

Write-side Behavior
Two downstream STREAMS messages are recognized and processed by the dkty
module:

M_CTL All downstream M_CTLmessages are silently freed.

M_IOCTL A number of commands may be sent from user-level processes to the
module in the form of M_IOCTL messages. These commands and
requests are described below.

IOCTLS
The following ioctls(2) are processed by the dkty module. All other ioctls(2) are
forwarded downstream. These ioctls(2) are provided for compatibility with the
standard terminal interface.

6-134

DKTY (7) (Release 4.0) DKTY (7)

TCGETS The argument is a pointer to a termios(2) structure. The current
value of the c_cflag is set and returned.

TCSETS The argument is a pointer to a termios(2) structure. The value of the
c_cflag is used to set the terminal parameters. If the value of
CBAUD is zero, an M_HANGUP message is sent upstream.

TCSETSW The argument is a pointer to a termios(2) structure. The value of the
c_cflag is used to set the terminal parameters. If the value of
CBAUD is zero, an M_HANGUP message is sent upstream.

TCSETSF The argument is a pointer to a termios(2) structure. An M_FLUSH
message is sent downstream and the value of the c_cflag is used to
set the terminal parameters. If the value of CBAUD is zero, an
M_HANGUP message is sent upstream.

TCGETA The argument is a pointer to a termio(7) structure. The current
value of the c_cflag is set and returned.

TCSETA The argument is a pointer to a termio(7) structure. The value of the
c_cflag is used to set the terminal parameters. If the value of
CBAUD is zero, an M_HANGUP message is sent upstream.

TCSETAW The argument is a pointer to a termio(7) structure. The value of the
c_cflag is used to set the terminal parameters. If the value of
CBAUD is zero, an M_HANGUP message is sent upstream.

TCSETAF The argument is a pointer to a termio(7) structure. An M_FLUSH
message is sent downstream and the value of the c_cflag is used to
set the terminal parameters. If the value of CBAUD is zero an
M_HANGUP message is sent upstream.

JWINSIZE The argument is a pointer to a jwinsize structure. If each element
of the current window size structure is zero, the error EINVAL is
returned. Otherwise, the current window size structure is copied to
the data area of the message block and returned.

TIOCGWINSZ The argument is a pointer to a winsize structure. If each element of
the current window size structure is zero, the error EINVAL is
returned. Otherwise, the current window size structure is copied to
the data area of the message block and returned.

TIOCSWINSZ The argument is a pointer to a winsize structure. If the window
size that is being set is different from the current window size, a
SIGWINCH is sent upstream. The current window size structure is
then set from the data area of the message block.

TIOCSTI The argument is a pointer to a char. The one byte data is copied to
a one byte message block, and the one byte message block is sent
upstream.

6-135

DKTY (7) (Release 4.0) DKTY (7)

SEE ALSO
dkhs(7).
ioctl(2), termios(2) in the UNIX System V Programmer’s Reference Manual.
ldterm(7), termio(7), ttcompat(7) in the UNIX System V System Administrator’s Refer-
ence Manual.

DIAGNOSTICS
The dkty module returns errors on an open or an ioctl(2) failure. These errors are:

ENXIO Returned on all failed open attempts. Can occur if the dkty open
routine is called without the MODOPEN flag set or if one or more
STREAMS resources is exhausted.

EINVAL This error is returned when all elements of the window size struc-
ture are zero for a JWINSIZE or a TIOCGWINSZioctl(2) request.

EAGAIN This error is returned when a message block allocation has failed.

EPROTO Improper ioctl(2) requests are returned with this error.

6-136

DKUX (7) (Release 4.0) DKUX (7)

NAME
dkux – CommKit Host Interface call processing module

DESCRIPTION
dkux is a STREAMS module that provides call processing support for the host
interfaces by communicating with peer processes in the AT&T data switch con-
troller via the dkhs(7) driver. Call processing and initialization are accomplished
by means of messages passed between the data switch controller and the host, the
format and content of which are defined by the UNIXP protocol. dkux contains an
implementation of the UNIXP protocol.

dkux performs bookkeeping functions relating to the status of data switch circuits
on each interface. It must also continually exchange special messages with the
controller to inform the controller that the host is active. To ensure that dkux is
always present, the dkdaemon(1M) process started when entering init state 2 by the
dkitrc(1M) script opens the Stream associated with the Common Signaling Channel
device and pushes and holds the dkux module on the Stream. The interface
remains active as long as the dkdaemon(1M) keeps dkux pushed on the Common
Signaling Channel .

There are also functions performed by dkux , such as call setup, which are
required on an as-needed basis. To this end, the dkux module may be pushed on
any Stream associated with a data switch circuit.

Read-side Behavior
The following STREAMS messages are acted on by the dkux module when
received from downstream:

M_CTL Supervisory interactions between this module and the dkhs(7)
driver take place via commands contained in M_CTL messages.
These messages are processed when received from downstream on
the Stream associated with the Common Signaling Channel . On
other channels, they are passed upstream uninterpreted.

M_DATA Messages received from the data switch controller arrive on the
Common Signaling Channel packaged in M_DATAmessages. dkux
processes these messages according to the UNIXP protocol.
M_DATAmessages received on other channels are passed upstream
uninterpreted.

M_FLUSH Standard STREAMS processing for M_FLUSH messages is sup-
ported in the dkux module.

Messages of all other types are passed upstream uninterpreted.

The following STREAMS messages are generated by the dkux module and sent
upstream:

M_IOCACK All recognized and successfully processed M_IOCTL messages are
positively acknowledged with an upstream M_IOCACKmessage.

6-137

DKUX (7) (Release 4.0) DKUX (7)

M_IOCNAK All recognized but rejected M_IOCTL requests are negatively ack-
nowledged with upstream M_IOCNAKmessages.

Write-side Behavior
The following STREAMS messages are recognized and processed by the dkux
module when received from upstream:

M_IOCTL A number of commands may be sent from user-level to the driver
in the form of M_IOCTL messages.

M_FLUSH Standard STREAMS processing for M_FLUSH messages is sup-
ported in the dkux module.

The following message types are generated by dkux and are sent
downstream.

M_CTL Supervisory circuit control information is passed down to the
dkhs(7) driver in M_CTLmessages. These messages are sent down-
stream on the Stream associated with the Common Signaling Chan-
nel .

M_STOPI To minimize data loss during a splice attempt, the dkux module
suspends the URP receivers by sending M_STOPI messages down-
stream on the Streams associated with the circuits to be spliced.

M_STARTI If a splice attempt cannot be completed, dkux resumes the URP
receivers by sending M_STARTI messages downstream on the
Streams associated with the circuits that were to be spliced.

M_DATA Messages destined for the data switch controller are sent down-
stream in M_DATAmessages.

M_FLUSH When necessary, dkux sends M_FLUSHmessages downstream on
the Common Signaling Channel to cause the dkhs(7) driver to flush
any queued UNIXP messages.

SEE ALSO
dkdaemon(1M), dkitrc(1M), dkhs(7).
ioctl(2) in the UNIX system V Programmer’s Reference Manual.

DIAGNOSTICS
The dkux module uses the following error values when rejecting ioctl(2) attempts.
General interpretations for these error values are presented below:

EINVAL The format or content of the ioctl(2) request is improper.

EBADF When processing a DKSPLICE ioctl(2) it is found that the previous
DKSPLICEPREPioctl(2) did not reference the same circuits indicated
by the DKSPLICE ioctl(2)

6-138

DKUX (7) (Release 4.0) DKUX (7)

EBUSY A resource required for completion of the ioctl(2) call is not avail-
able. This does not apply to an inability to allocate buffers.

ENOSPC dkux is unable to allocate a buffer which is needed in the course of
processing the ioctl(2) request.

EIO A software error of unknown cause occurred while processing the
ioctl(2) request.

ENODEV Circuits involved in the ioctl(2) call are not in the proper state.

ENOENT The Common Signaling Channel has not been configured and, thus,
the interface is unavailable.

ENOMEM Circuits involved in the ioctl(2) call are not in the proper state.

EPERM The user who issued the ioctl(2) call does not have super-user
privileges.

6-139

DKXQT (7) (Release 4.0) DKXQT (7)

NAME
dkxqt – remote execution character special device

DESCRIPTION
dkxqt is a character special device that provides processes with an interface that
implements the remote execution protocol of the CommKit Host Interface. This
interface is used on the remote end of a remote login or remote execution circuit. It
cannot be used to originate calls.

The routines within the dkxqt driver are the following:

dkxopen() Opens a channel of an incoming call for remote execution.

dkxclose() Closes and takes down the channel for remote execution.

dkxread() Reads from the calling process. This routine puts together a read
request, sends it to the calling host and waits for a reply indicating
the amount of real data to be received over the channel. It then reads
in the data and returns to the user process.

dkxwrite() Writes to the calling process. This routine first sends a write request,
then sends the data to the calling host. It then waits for a reply mes-
sage indicating the amount of data written. It returns this amount to
the user process.

dkxioctl() Send ioctl commands to the calling host. This routine sends an ioctl
request followed by the data to the calling host and waits for a
response. It also reads any data transmitted from the calling host and
returns this to the user process.

FILES
/dev/dkx/xqt Common Signaling Channel device for the inter-

face
/dev/dkx/ intf .chan individual remote execution devices

SEE ALSO
dk(1C), dkdaemon(1M), dkhs(7), dkxmx(7).

DIAGNOSTICS
Error values have the following meanings when received from the dkxqt driver:

EIO Attempts to open a device when the interface is not active or when
the device is experiencing problems will fail with this error. Reads,
writes, and ioctls will also return this error for device problems.

6-140

DKXQT (7) (Release 4.0) DKXQT (7)

ENXIO Attempts to open minor device 0 or 1 will fail with this error.

EAGAIN Attempts to reopen a device that is still cleaning up after the last
close will fail with this error.

WARNINGS
The calling CommKit host must use the dk(1C) command for writing a block of
data over a channel using the remote execution protocol or the results are
unpredictable. The protocol is overhead-intensive and can be extremely slow in a
WAN.

6-141

DKXQT (7) (Release 4.0) DKXQT (7)

6-142

Index

*, 3-19

A

Address
Define, 2-28 to 2-29

Administration, 4-1
Printer, 4-50

authorize, 3-19, 6-26

B

Backplane Slots, 2-19
Basic Networking Utilities (see BNU)
BNS-1000, 1-1
BNS-2000, 1-1
BNU, 1-5, 4-23
Board

Factory Settings, 2-3
Brackets

system field, 3-17

C

Cable
Connection, 2-25
Routing, 2-23

Cabling
Tools, 2-24

Cartridge Tapes, 1-14
Changing Hardware Configuration,

4-27
Channel groups, 3-13, 5-3
Channels

Changing the Number of, 4-28
close(2), 5-17

Communication
Troubleshooting, 4-32

Compatibility, 5-1
Environment Variables, 5-1
Library Interface, 5-9
Programmer-Level, 5-7
System Call, 5-15
User-Level, 5-3

Conduit Installation, 2-24
Configuration

Changing, 4-27
Control Computer Database, 2-26
Dialogues, 2-31
Listener, 4-15
Multiple Listeners, 4-19
netconfig File, 4-15
Printer, 4-52, 4-55, 4-57
Printer: Data Switch, 4-62
Printer: Spooling Host, 4-53
Remote Host, 4-55
RFS, 4-21
TLI Interfaces, 4-20
uucp, 4-23
uucp with d or g Protocol, 4-10

Configuration/Maintenance, 1-5
Configuring Tables

e or g protocols, 4-24
uucp, 4-10, 4-14, 4-26

Connectivity
Logical, 1-4

Control Tables, 3-1
Conventions

Display, 1-9
Format, 1-10

CPM-HS, 1-12
Configuration, 2-31
Installation, 2-21

Customer Assistance, 1-14

Index I-1

Index

Customize Files
Example, 2-51

D

d protocol, 4-11
Data Network Block Diagram, 1-1
Data Switch Dialstrings, 3-2

Example, 3-5
Datakit II VCS, 1-1
Define Group Name, 2-27
Description

Equipment, 1-11
Product, 1-1

Destination mapping, 3-10
Device Number

Partitioning, 4-9
Diagnostics, 4-35

3B2 Computer, 4-35
Data switch control computer, 4-36
Host Interface Module, 2-32
Looparound, 4-36
Off-line, 4-35
Phases, 2-33

Directory Mode for
/etc/opt/dk/srvtab, 3-40

Display Conventions, 1-9
dk, 5-4, 6-1
dkacct, 6-104
dkaudit, 6-106
dkauth, 3-19, 6-6
dkcat, 4-67, 5-5, 6-14

Notes, 4-61
dkcu, 5-5, 6-15
dkdaemon, 6-29
dkdevs, 6-37
dkdial, 6-67
dkdo, 4-66, 5-5, 6-19

dkdotab, 3-1, 3-42, 6-109
dkepoint, 6-72
dkerr, 6-74
dk_flush, 6-60
dkgos, 6-81

Example, 5-26
DKGROUP, 5-1, 5-3
dkgroups, 3-13, 6-111
_dkhost_parms, 2-48
_dkhost_parms File, 2-4

Example, 2-5
dkhosts, 3-1, 3-7, 6-113
dkhs, 6-127
dk_info, 6-62

Example, 5-21
DKINTF, 5-1
dkipump, 6-39
dkitdial

Example, 5-23
dkitrc, 4-4, 6-40
DKKEY, 5-1
dkleveld, 6-83

Example, 5-28
dkload, 3-20, 6-41
dkmaint, 6-44
dkmgr, 6-86
dkminor, 5-9
dkmx, 6-130
dknamer, 5-9
dk_namer, 6-64

Example, 5-24
DKNUMINTF, 5-2
dkpe, 6-131
dkregister, 6-46
dkserver, 1-6, 2-28, 6-47
dksplice, 6-93

Example, 5-29
dksplwait, 6-96

I-2 Index

Index

dksrverr, 6-51
dksrvlog, 6-115
dksrvtab, 6-118
dkstat, 6-54
dktli, 6-132
dk_tnamer

Example, 5-25
dktsplice, 6-98
dkty, 6-134
dkuidtab, 3-1, 3-44, 6-117
dkunlock, 6-59
dkurpctl, 6-100
dkux, 6-137
dk_uxinfo, 6-65
dkxenv, 6-101
dkxenviron, 6-101
dk_xnamer

Example, 5-26
dkxqt, 6-140
dkxwrite, 5-10
do, 3-20
Document Organization, 1-6
Documentation

Reference, 1-7
dtnamer, 5-10
dxnamer, 5-10

E

e or g protocols
Originating Calls, 4-24

– , 3-19
Enter Group Name, 2-27
Environment Variables

Compatibility, 5-1
Error Messages, 4-38

Outgoing Call, 4-42
Example

Customize Files, 2-51
Examples

Data Switch Dialstring, 3-5
dkgos, 5-26
_dkhost_parms File, 2-5
dk_info, 5-21
dkitdial, 5-23
dkleveld, 5-28
dk_namer, 5-24
dksplice, 5-29
dk_tnamer, 5-25
dk_xnamer, 5-26
isdkclosed, 5-30
isdkeof, 5-30
isdkleveld, 5-30
Library Routines, 5-21
poll, 5-33
Rejection Code, 3-34
Special Device Files, 4-9
.user, 3-29

Exit Codes, 4-69

F

Features, 1-2
Fiber Optic

Cable, 1-13, 2-23, 2-25
Link, 1-6

File Location
Changes, 4-3

File/Directory Transfer, 1-3
Files

Header, 5-8
Linking, 4-7
Log, 4-3
Sharing, 1-5
Special Device, 4-8

Fixed User ID Mapping, 3-31

Index I-3

Index

Flags Field, 3-21
Flow Control

Printer, 4-69
Format

Manual Page, 1-16
Format Conventions, 1-10

G

Glossary, 1-9
Group Name

Define, 2-27
Enter, 2-27

Group.user Facility, 3-29

H

Hardware
Installation, 2-17

Hardware Configuration
Changing, 4-27

Header Files, 5-8
Help numbers, 2-1
High Performance Application

Library, 1-6
$HOME/.dkhosts, 3-10
Host Access, 1-2
Host Interface Board, 1-2, 1-11

Install, 2-20

I

Initial Parms Field, 3-26
Installation, 2-2

Conduit, 2-24
Hardware, 2-17
TLI, 2-16

Installation Preparation, 2-1
Installation/Removal, 1-5
ioctl(2), 5-18
isdkclosed

Example, 5-30
isdkeof

Example, 5-30
isdkleveld

Example, 5-30

J

job control, 5-4

L

Library
High Performance Application, 1-6
Network Independent Applica-

tion, 1-6
Library Interface

Compatibility, 5-9
Library Routines

Example, 5-21
Obsolete, 5-9

Library Routines Supported, 5-10
Linking

Host Interface Files, 4-7
Listener, 4-14

Configuring, 4-15
Define Address, 2-29
restart, 4-19
Starting, 4-17
Stopping, 4-17
Verify, 4-18

Local_loop, 4-36
Local/Remote Login, 1-2

I-4 Index

Index

Log Files, 4-3
Logical Connectivity, 1-4
login, 3-20
Looparound diagnostics, 4-36
lp, 4-69

M

Maintenance, 1-5
Manual Pages, 1-15

format, 1-16
maphost, 6-102
Message Boundaries, 5-8

N

netconfig, 4-15
Network Independent Application

Library, 1-6
Non-Prompted Mode, 2-4
Non-prompted Mode, 2-48
null Service, 3-19

O

open(2), 5-16
Originating Calls

e or g protocols, 4-24
uucp, 4-10

P

Paddle Board, 1-12
PDD Connections, 4-54
poll, 5-17

Example, 5-33

Port monitor, 4-19
Print Spoolers, 1-5
Printer

Administration, 4-50
Configuration, 4-52, 4-55
Connected to a Local Host, 4-52
Connected to a Node, 4-53 to 4-54
Flow Control, 4-69
Sharing on a Network, 4-51
Troubleshooting, 4-64

Program Arguments, 3-26
Program Field, 3-26
Prompted Mode, 2-49
Protocol

BNU, 4-23
d or g, 4-10

pull, 5-5, 6-21
pupu, 3-20
push, 5-5, 6-23

R

read(2), 5-16
Reading Statistics, 4-34
Reading Status, 4-34
Receiving Calls

uucp, 4-14, 4-26
Reference Documentation, 1-7
Rejection Code

Example, 3-34
Remote Execution, 1-3
Remote Host

Configuration, 4-55
Remote_loop, 4-37
Removal, 1-5

Software, 2-47
TLI Package, 2-46

Restart

Index I-5

Index

listener and port monitor, 4-19
Restrictive User ID Mapping, 3-32
RFS, 1-5, 4-21
rl, 3-20
Round-Robin Dialing, 5-2
Routing

Cable, 2-23
rx, 3-21

S

Scanning Rules
Server Table, 3-28

Security, 1-3, 3-38
Server, 1-6
Server Table, 3-16

Flags, 3-21
Modifications to, 3-28
Scanning Rules, 3-28
Unsecure Entries, 3-38
Validation and Matching, 3-28

Service Field, 3-18
Services, 1-3
Software

Certificate, 1-14
Installation, 2-2
Pre-installation, 2-3
Release, 1-10
Removal, 2-47
TLI, 2-16
Troubleshooting, 4-29

Space Requirements, 2-2
Special Device Files, 4-8

Example, 4-9
Spooling Host, 4-53

Configuration, 4-57
srvtab, 3-1, 3-15, 3-40, 6-118
Statistics

Reading, 4-34
Status

Reading, 4-34
STREAMS, 5-7
System Call

Compatibility, 5-15
System Field, 3-17

T

TLI, 1-6, 4-14
Applications, 4-26
Configure Multiple Interfaces, 4-20
RFS Configuration, 4-21
uucp Configuration, 4-23

TLI Application
Spawning from srvtab, 3-36

TLI Package
Installation, 2-16
Removal, 2-46

Tools
Cabling, 2-24

Translated User ID Mapping, 3-31
Transparent User ID Mapping, 3-30
Transport Layer Interface (see TLI)
Trapping Incoming Calls, 3-34
Troubleshooting

Facilities, 4-29
Host Interface Communication,

4-32
Printer, 4-64
Software, 4-29

TTY Interface, 5-7

I-6 Index

Index

U

Unauthorized service requests, 3-35
UNIX System

V Release 4, 2-2, 4-1
Version, 1-10

.user
Example, 3-29
system field, 3-18

User Field, 3-24
User ID Mapping

Fixed, 3-31
Options, 3-24
Restrictive, 3-32
Rules, 3-30
Translated, 3-31
Transparent, 3-30

uucp, 1-5, 3-21, 4-23
d or g Protocol, 4-10
Originating Calls, 4-10
Receiving Calls, 4-14, 4-26

V

Verify
Data Transfer Across the Interface,

2-42
dkdaemon Process, 2-36
dkserver Process, 2-37
Operation, 2-35
Remote Login Facility, 2-44
Terminal Login Across the Inter-

face, 2-43
the Listener, 4-18

W

whoami Service, 3-21
Wild Card, 3-19
wildcards, 3-17
write(2), 5-16

Index I-7

Index

I-8 Index

	TR.PDF
	Additional Information
	Additional Information

	1.PDF
	Introduction
	General
	Description
	Host Access
	User Features
	Local/Remote Login
	File/Directory Transfer
	Remote Execution

	Administrative Features
	Security
	Services
	Installation and Removal
	Configuration and Maintenance
	Print Spoolers
	uucp Services
	File Sharing

	Development Features
	Fiber Optic Link
	General Server
	High Performance Application Library
	Network Independent Application Library

	Document Overview
	Reference Documentation
	Glossary of Terms
	Display Conventions
	Format Conventions
	CommKit Host Interface Software Release/UNIX System Version Information

	Equipment Description
	Host Interface Module
	CPM-HS Module and Paddle Board
	Fiber Optic Cable
	Cartridge Tapes
	Software Certificate
	Customer Assistance

	Manual Pages
	Format

	2.PDF
	Installation/Removal
	Preparation
	Overview of Initial Installation
	Install the CommKit Host Interface Software
	Pre-Installation Procedures
	Initial Installation Procedures
	Non-Prompted Mode (_dkhost_parms File)
	General Installation
	Detailed Installation
	Upgrade Procedures

	Install the CommKit TLI Package
	Install Host Interface Hardware
	Procedure

	Install the CPM-HS Module in the Data Switch Node
	Route the Fiber Optic Cable
	General
	Tools and Hardware
	Conduit Installation

	Connect the Fiber Optic Cable
	Configure the Data Switch Control Computer Database
	
	Define Group Name
	Define Address for dkserver Service
	Define Address for the Listener
	Configure the CPM-HS Module

	Run Diagnostics on Host Interface Module
	Diagnostic Phases

	Verify Operation
	Verify the Operation of the dkdaemon Process
	Verify the Operation of the dkserver Process
	Verify Data Transfer Across the Interface
	Verify Terminal Login Across the Interface
	Verify Operation of the Remote Login Facility

	Customize the Control Tables and dkitrc
	Where To Go From Here

	Remove the CommKit TLI Package
	Remove the CommKit Host Interface Software
	Non-Prompted Mode (_dkhost_parms File)
	Prompted Mode

	3.PDF
	Control Tables
	Introduction
	Overview of Control Tables

	Data Switch Dialstrings
	Examples

	dkhosts
	Destination Mapping

	dkgroups
	srvtab
	Server Table
	System Field
	.user Suffix

	Service Field
	
	*
	authorize
	dkload
	do
	login
	pupu
	rl
	rx
	uucp
	whoami

	Flags Field
	User Field
	Program Field
	Initial Parms Field
	Server Table Scanning Rules
	Modifications to the Server Table
	Server Table Validation and Matching

	Group.user Facility
	User ID Mapping Rules
	Transparent User ID Mapping
	Translated User ID Mapping
	Fixed User ID Mapping
	Restrictive User ID Mapping Ranges

	Trapping Incoming Calls
	Unauthorized Service Requests

	Spawning a TLI Application
	Server Table Entries Which Are Not Secure
	Directory Mode for /etc/opt/dk/srvtab
	Summary

	dkdotab
	dkuidtab

	4.PDF
	Administration
	Introduction
	Administrative Notes
	UNIX System V Release 4
	Files That Grow
	dkitrc Script File
	Linking of Host Interface Files
	Special Device Files
	Configuring uucp with d or g Protocol
	Configuring Tables for Originating Calls
	Configuring Tables for Receiving Calls

	Using TLI Support
	Configure netconfig File
	Configure a Listener
	Starting the Listener
	Stopping the Listener
	Verifying the Listener
	Manually Restart the Port Monitor and Listener Service
	Configure Multiple Listeners
	Configure Multiple TLI Interfaces
	Configuring RFS to Use TLI
	Configuring uucp to Use TLI
	Protocol for BNU Over CommKit Host Interface Channels
	Configuring Tables for Originating Calls
	Configuring Tables for Receiving Calls Using TLI

	Other TLI Applications

	Changing the Hardware Configuration After the Initial Installation
	Changing the Number of Channels
	Troubleshooting Facilities
	Software Troubleshooting Procedures
	Troubleshooting the Host Interface Communication
	Reading Status and Statistics

	Diagnostics
	3B2 Computer Diagnostics
	Data Switch Control Computer Looparound Diagnostics
	Local_loop
	Remote_loop

	CommKit Host Interface Error Messages
	Console Error Messages
	Hardware Error Messages
	Software Error Messages
	Server Error Messages

	Outgoing Call Error Messages

	Printer Administration
	Sharing a Printer on a Data Switch Network
	Printer Configurations
	Configuration 1: Connection to a Local Host
	Configuration 2: Connection to a Data Switch Node; Spooling Host Using Fiber
	Configuration 3: Connection to a Data Switch Node; PDD Connections

	Configuration Procedures
	Remote Host Configuration
	Spooling Host Configuration Procedures
	Local Host Ð Configuration 1
	Data Switch Node (Spooling Using Fiber) Ð Configuration 2
	dkcat Notes
	Data Switch Node (PDD Connected) Ð Configuration 3

	Data Switch Configuration Procedures
	Connection to a Local Host
	Connection to a Data Switch Node

	Troubleshooting Printer Problems
	Printer Problems
	dkdo Problems
	dkcat Problems
	Returns an Error
	Fails to Make a Connection With the Printer
	Data Transmission Problem
	Works but Partial Data Loss

	Printer Flow Control
	lp Subsystem Problems

	CommKit Host Interface Exit Codes

	5.PDF
	Compatibility
	Introduction
	Environment Variables Compatibility
	DKINTF
	DKGROUP

	User-Level Compatibility
	dk
	dkcat
	dkcu
	dkdo
	push and pull

	Programmer-Level Compatibility
	STREAMS
	TTY Interface
	Message Boundaries
	Header Files
	Library Interface Compatibility
	Obsolete Library Routines
	Supported Library Routines

	System Call Compatibility
	open(2)
	read(2)
	write(2)
	poll(2)
	close(2)
	ioctl(2)

	Examples
	dk_info Example
	dkitdial Example
	dk_namer Example
	dk_tnamer Example
	dk_xnamer Example
	dkgos Example
	dkleveld Example
	dksplice Example
	isdkclosed, isdkeof, and isdkleveld Example
	poll Example

	6.PDF
	Manual Pages
	DK
	DKAUTH
	DKCAT
	DKCU
	DKDO
	PULL
	PUSH
	AUTHORIZE
	DKDAEMON
	DKDEVS
	DKIPUMP
	DKITRC
	DKLOAD
	DKMAINT
	DKREGISTER
	DKSERVER
	DKSRVERR
	DKSTAT
	DKUNLOCK
	DK_FLUSH
	DK_INFO
	DK_NAMER
	DK_UXINFO
	DKDIAL
	DKEPOINT
	DKERR
	DKGOS
	DKLEVELD
	DKMGR
	DKSPLICE
	DKSPLWAIT
	DKTSPLICE
	DKURPCTL
	DKXENVIRON
	MAPHOST
	DKACCT
	DKAUDIT
	DKDOTAB
	DKGROUPS
	DKHOSTS
	DKSRVLOG
	DKUIDTAB
	SRVTAB
	DKHS
	DKMX
	DKPE
	DKTLI
	DKTY
	DKUX
	DKXQT

	IX.PDF
	Index

